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Abstract

Algorithmic modeling (or procedural modeling) is a recent research area in computer graphics
which encompasses several methods extending traditional geometric modeling.

Man-made objects are mostly constituted of connected rigid bodies that are well represented by
geometric solids. On the other hand, there are in nature extremely complex objects that can have a
combination of the following characteristics: irregular geometry, fuzzy boundaries, inhomogeneous
material, anisotropic properties. As examples of objects in this category, we find: terrain, plants,
clouds, liquids, fire and the living creatures. These objects are part of our environment and, thus,
are very familiar to all of us. For this reason, it is even more difficult to represent in the computer
their form (visualization) and movement (animation).

Despite its effectiveness to describe manufactured objects, geometric modeling techniques are,
in general, inadequate to fully describe organic forms and other natural phenomena. One of the
main motivations of algorithmic modeling has been the challenge to capture the shape and behavior
of complex objects from the real world.

This part introduces the theory and techniques of algorithmic modeling from the point of view
of a conceptual and integrated framework.



Chapter 1

Models and Machines

This chapter investigates mathematical models that can be used to describe complex shapes. Our
goal is to define an abstract framework which extends geometric modeling and provides greater
expressive power, allowing for a representation of these objects in the computer.

While simple shapes can be described by means of analytical expressions, complex ones may
require a more powerful mathematical description. The concept of a mathematical function, i.e. an
entity that takes a value as input, executes a procedure and outputs another value, give us such
a mechanism. The procedure is the embodiment of an algorithm and consists of all steps that are
necessary to perform the computation.

Since we are interested in objects from the real world, we must be able, essentially, to deal with
point sets embedded in the continuous three dimensional space. Consequently, we need functions to
compute with the real numbers. As we will see, a mathematical model for this type of function is
given by a machine over the field of reals.

It is important to note that the sets computable by this machine are the denumerable family of
semi-algebraic sets. Based on the results in Part | this indicates that our algorithmic model indeed
contains the geometric models. Also, by the Stone-Weierstrass theorem, these sets provide good
approximations to most reasonable shapes found in nature.

1.1 Shape Modeling

As we have seen in Part 77, there are two forms of geometric specification: direct and indirect.

The direct form defines the geometry explicitly by a parametric equation x = f(u), where x € R3
is a point of the ambient space and u € U C R¥ is a point of a subset of a parameter space with the
same dimension k as the object. The mapping f : R¥ — 3 makes it possible to generate all the
points of the object, as long as U is known.

The indirect form defines the geometry implicitly by an equation f(x) = ¢, where x is a point
of the three dimensional space and ¢ is a constant or an interval of the real line. The mapping
f : B3 — R makes it possible to determine which points of the ambient space belong to the object !

INote that the characteristic function of the object is trivially defined from the implicit equation:

X(l’):{ (1) if f(z)=c

otherwise
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These two forms of defining geometry are illustrated in Figure 1.1.
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FIGURE 1.1: Direct and indirect forms

In summary, geometric models are defined, in one way or another, by the above equations
or some combination of these equations. In this case, the functions f are restricted to analytic
expressions (actually, in practice, we work with low degree polynomials, such as quadrics or cubics).

From the previous observations, it becomes clear that geometric modeling can be extended
naturally if the restrictions imposed on f are eliminated and arbitrary functions are allowed. This
general form of shape modeling, thus, requires a mathematical model of functions over the real
numbers. More specifically, in the parametric case f is a function of R* into R? and, in the implicit
case, f is a function of R3 into R.

1.2 Machines over the Reals

A model for machines over the real numbers comes from the theory of computation and complexity of
continuous algorithms (Smale, 1990). This new interdisciplinary field integrates ideas from classical
computer theory with methods from numerical analysis in order to develop a formal treatment of
problems defined over continuous domains. Central to this discipline is the concept of a universal
machine over an ordered ring, developed by (Blum, Shubb and Smale, 1989), which plays in the
theory of continuous computation the same role as the Turing machine in the theory of discrete
computation (where the ring is Z).

Definition 1.1 : A finite dimensional machine M over a ring R consists of three spaces (input
space 7, state space § and output space OQ), together with a finite directed connected graph with
four types of nodes (input, output, computation and branch), with associated maps and labeled
1 N.

gy

The spaces Z, S and @ are, respectively, of the form R, R" and R™, where R* denotes the
direct sum of R with itself k times.
The nodes of M are of the following types:

Input node: has no incoming edge and only one outgoing edge, (1. It 1s associated with a
linear injective map [ : 7 — §.
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Outpul node: has no outgoing edges. It is associated with a linear map O : § — O.

Computational node: has a single outgoing edge. It is associated with a polynomial map

g:8—8.

Branch node: has two outgoing edges, 3, and ﬁ;’ It 1s associated with a polynomialh : § — R,
which specifies the next node according to the conditions h(z) < 0 and h(x) > 0.

Figure 1.2 shows a diagram of the machine M and its nodes.

Input Node, 1
I:1->S

R

Computation Node Branch Node, n
0:S->S h: S>R

Y h(z) < 0‘/ \i(z) >=0
P B
l |

Output Node, N
0:.S->0

FIGURE 1.2: The nodes of a machine M over R (after Blum)

Let "= {1,..., N} be the set of nodes of M, where 1 is the input node and N is the output
node (assuming that there is only one output node). A machine constructed as above is said to be
in normal form.

Proposition 1.1 Any machine M over R has an equivalent one tn normal form.

The space of node/state pairs N x 8 is called the full state space of M. The machine is associated
with the computing endomorphism

H NxS—NxS

of the full state space to itself. H maps each node/state pair (n,x) to the unique next node /
next state pair (8(n,x), g(n,x)), where 7 gives the next node and ¢ the new state. This scheme is
determined by the graph of M and the associated maps of its nodes.

The computing endomorphism is a very important tool that, among other things, can be used
to define the input-output map ppr of a machine M.
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The inner workings of M are revealed by ¢ in the following way: A value y € 7 is input into
M by x¢ = I(y). Then, M performs the sequence of computation steps, 1 = H(#g),...,xp =
H(xp-1),..., until a node/state pair (N, zr) is produced. If M ever halts, it outputs a value
z = O(xr).

When the above sequence (x3) is finite, M stops on input y in time 7" with output O(xr) and
o (y) describes a halting computation. When the sequence (zy) is infinite, M does not halt on
input y, and @ (y) is not defined.

The set Qs of all points y € 7 on which M halts is called the halting set of M.

A map ¢:Y C R' — R™ is computable over R if and only if there is a machine M over R such
that Qy =Y and gy = ¢ for all y € Y (i.e. M halts on every element of the domain of ¢). In
such case, M 1is said to compute .

Two machines M7 and M, are called equivalent if they compute the same map .

It is natural to interpret M as a discrete dynamical system. In this context, we study the orbits
of initial points zp = (1, I(y)) under iterates of H. The qualitative behavior of M can be analyzed
through the phase portrait of ¢ur. In this way, although the graph of M may be quite complicated,
we can represent it in a simple way, as shown in Figure 1.3.

Input y

\i
z<-(1,1(y)

Y

Compute
(nXx)=z <-H(2)
Branch
n= N/
Output O(x)

FIGURE 1.3: Canonical schemata for a machine M (after Blum)

1.3 Decidable Point Sets

A set S'is decidable if its characteristic function yg is computable, otherwise it is undecidable, (Blum
and Smale, 1992). Intuitively, a set is decidable, relative to a universe U, if there is an effective
procedure that decides whether or not any given element u € U belongs to the set.
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Proposition 1.2 (Blum-Smale) A set S C R' is “decidable over R” if and only if both S and its
complement S’ are halting sets of machines over R.

Essentially, we need to construct for S a decision machine M* which computes
xR —={0,1}, x(y) =1iffy€5.

This can be done by connecting together two machines M and M’, which, respectively, have as
halting sets S and its complement S’ on R'. The input is fed simultaneously into M and M’. By
construction, only one of them will halt. If M halts, the output is 1; if M’ halts the output is 0 (see
Figure 1.4).

if M halts if M’ halts

0 1

FIGURE 1.4: Decision Machine

Definition 1.2 A set S is called “semi-decidable” (undecidable) if it is the halting set of a machine
M over R, but its complement S’ is not.

This means that, the decision machine M™ on input y will output 1 if and only if y is in .S; but,
if y is not in S there are no guarantees that AM* will halt.

Proposition 1.3 (Blum-Shub-Smale) The halting setl of a machine M over R is a disjoini count-
able union of semi-algebraic sets. The input-output map ppr ts a piecewise polynomial map.

The proof of this proposition is somewhat involved, but the basic idea is simple. Since, besides input
and output nodes, M has only computation and branch nodes. the path of any halting computation
can be streamlined to a series of polynomial maps. The halting set Q3 = UV, where V,, is defined
by polynomial inequalities of the type

91(---9a(1(y))) <0.

For more details we refer the reader to (Blum, Shubb and Smale, 1989).

The above results clearly establish, in this theory, a link between the notions of decidability
and computability. Furthermore, they reinforce the conclusions of Part that semi-algebraic sets are
natural candidates to be used in the representation in geometric and solid modeling.
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Also, from the direct relationship between the characteristic function of a point set and the
specification of a shape by an implicit equation, f(z) = ¢, it follows that the computability of f
implies the decidability of f=!(¢). The validity of this assertion for the parametric case is immediate
because, in that case, the halting set .S is the entire domain of the map.

1.4 The Machine at Work

Now we will show through some examples, the application of this model of computation over the
reals to define geometric objects.

1.4.1 Parametric Surfaces (Local)

In a parametric surface patch, M has only one computation node and its associated spaces are as
follows: Z =U C R?and & = @ = R3. When the surface is smooth, I(y) is the natural injection,
¢(xp) is a diffeomorphism and O(x;) is the identity map.

Example 1.1 (Tensor Product Bezier Patch) A cubic Bezier patch is defined by a 4 x 4 net
of control points p; ; € R3. The parameter space U is the unit square [0,1] x [0,1], g is a tensor
product Bezier polynomial

3 3
g(u,0,0) = > " pj By a(w) By a(v),
i=0 j=0
where By, j(u) are the Bernstein polynomials.

1.4.2 Boundary Decomposition Schemes

Because it is not possible to find a global parametrization for most surfaces, we have to decompose
them into patches; such as in Example 1.1. These pieces are joined by a gluing operation, covering
the surface completely. This type of scheme is required when the surface does not have the same
topology as R?.

Note that, some care must be exercised if the surface is not a two-dimensional manifold.

1.4.3 Implicit Solids

An implicit solid is the set of points € R? which satisfy the equation f(z) < ¢. When f is a
polynomial over R3, the point-set is semi-algebraic and, as we demonstrated, the halting set of a
machine over R.

1.4.4 CSG Objects

Constructive Solid Geometry objects are generated from basic primitives by a finite process of taking
unions (“or’s”), intersections (“and’s”) and complements (“not’s).

Proposition 1.4 Any algebraic CSG object can be expressed as a finite union of basic semi-algebraic
sets.
A basic semi-algebraic set is defined as the set of x € R” satisfying basic conditions of the type:

P(x) = 0
Ql(l‘) > 0,
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where P and ) are polynomaals.

Fact: The proof is based on the following facts: If P and @ are polynomials, then
1. P(z) =0& Q(x) = 0 iff P*(z)+ Q*(x) = 0.
2. Q(z) 0t —Q(x)>0]Q(x)=0.
3. P(x) Z0iff — P(z)> 0] P(x) > 0.

Proof: Intersections are eliminated using (1) and complements using (2) and (3).

This demonstrates that an object described by the CSG scheme can be reduced to a simple map
computable on a machine over R.

On the other hand, an arbitrary CSG expression can be trivially converted into a machine over
R with exactly the same tree structure using the fact that for P(x) < 0, Q(x) < 0, the following
equivalences apply:

PUQ® =min(P, Q).
PNQ =max(P,Q).

P\Q=PNQ =max(P,—Q).

1.5 Beyond Geometric Models

The examples above indicate that our algorithmic modeling methods encompass the traditional
geometric modeling techniques.
At this point, we need to answer the following crucial questions:

e Can algorithmic methods model complex shapes that are out of the scope of geometric modeling
techniques?

e If so, what are the classes of objects that can be described by algorithmic methods?

In the rest of this chapter we will investigate these two issues and their implications.

1.5.1 Fractals

Fractals are examples of highly irregular objects that cannot be constructed using classical geometric
modeling techniques, (Mandelbrot, 1977). A fractal is naturally described by a limiting process, well
suited to implementation using a recursive algorithm, (Peitgen and Saupe, 1988). For this reason,
we would expect that a machine over R is a good candidate to model a fractal. On the other hand,
the theorem below is a bit discouraging.

Theorem 1.1 Halting sets of machines over R have integral Hausdorff dimension.

Proof: This is a direct corollary of Proposition 1.3. It follows from the fact that semi-algebraic sets
(and, hence, countable union of semi-algebraic sets) have integral Hausdorff dimension.

We will see through an example that, although a machine over R cannot be used to compute
fractals, it can be used to compute approximations of them.
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Example 1.2 (Julia Sets) The set of all points z whose orbits are caotic (not stable) under the
action of a complex dynamical system g(z) is the Julia set of g. These points are contained in the
complement of the basin of attraction of ¢ (points moving to a contracting neighborhood).

Most Julia sets are fractals. Consequently, since fractals have fractional Hausdorf dimension,
most Julia sets are undecidable. But, because the complement of a Julia set is “semi-decidable”
(i.e. the halting set of a machine over R), it is possible to construct a machine M that computes
approximations of a Julia set J.

The idea is to employ a decision machine as in Figure 1.5.

(z,0)

J,

(z.1) <- (9(2).1)

h(z) <07

FIGURE 1.5: Julia set machine

From the theory of complex analytic dynamics, there is an € > 0 and a polynomial & such that
h(z) < 0if and only if z is in a contracting e-neighborhood of the dynamical system g(z),(Blanchard,
1984). This allows us to identify the points that belong to the complement of J.

Using only the above test, M will halt in a time ¢ < oo if z € J, otherwise it will loop forever.
Since points closer to the Julia set will take longer to be attracted, an approximation of J 1s given
by the set of points that remain undecided after a large number of iterations 7. This approximate
method is called escape time algorithm by (Barnsley, 1988).

There are a couple of observations that need to be done in relation to the computation of fractals
and machines over R: First, the geometry of a fractal set is so complex that cannot be computed ex-
actly. Second, a fractal has a precise mathematical characterization that can be effectively described
by a machine over R. In a sense, M gives the best possible representation of a fractal. It allows
us to capture the essential aspects of these objects using a direct computational scheme. Third, a
fractal shape can be approximated to any degree of accuracy by a union of semi-algebraic sets.

Actually, we can make a much stronger and general affirmative:
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Theorem 1.2 (Stone-Weierstrass) Every continuous function f : S — R of a compact melric
space S may be represented by a sequence of polynomuals converging uniformly to the function.

Proof: See (7).

1.6 Extending M

So far, we introduced a finite dimensional model of a machine over a ring. It is powerful and very
general, allowing us to talk about computation over various domains. In particular, it includes the
two important cases, R = Z, the integers and, R = R, the real numbers. In every case, Z is a natural
subring of R.

In order to be complete, and allow for a description of arbitrary algorithmic shapes, this model
has to be further developed in several directions.

The model can be extended to include the notion of nfinite dimensional machines over R. This
makes possible the underlying spaces to be R*, the infinite direct sum space over R. R™ can be
thought of as the space of finite but unbounded sequences of R, because a point y = (y1,y2,...) € R®
satisfies y; = 0 for k sufficiently large. Consequently, all we need to do is to add a fifth node to the
finite dimensional machine to get this extra power. The fifth node allows accessing of coordinates of
arbitrarily high dimension.

The model can be augmented to incorporate probabilistic algorithms. This requires the addition
of a coin tossing node with an associated probability distribution.

The model can be modified to be able to deal with parallel and distributed computation. This is
a significant change of perspective and requires a formalization of new concepts such as permanency
(process) and identity (reference) (Milner, 1989).

1.7 Discussing the Model

A question one may ask 1s: Why go into the trouble of developing a continuous model of a machine,
if the classical theory of computation provides the Turing machine, a discrete model that perfectly
reflects the nature of a digital computer?

The problem is that a Turing machine cannot be used to investigate the type of models required
for the description of shapes. The theory of digital automata is a chapter of formal logic. It,
therefore, emphasizes combinatorics rather than analysis. This prevents us to take advantage of
calculus and other tools of continuous mathematics in our models. Furthermore, the Godel coding
of a Turing machine destroys the algebraic structure of the underlying problem spaces, eliminating
also the possibility of using algebra 2 .

So, we need a model of a continuous machine!

In spite all those reasons, one can argue that this kind of model is a poor abstraction of the
digital computer. How can we input an arbitrary real number into such a discrete machine? Well,
this actually cannot be done. In practice the machine can only take in a finite number of decimals.
Nonetheless, this limitation does not invalidate our model. The fact that we have to work with
rational numbers is not a problem, since they approximate real numbers to a high degree of accuracy.
Of course, we have to be careful about round-off errors. This is one of the main subjects of the
Numerical Analysis and may be incorporated into the model of a machine over R.

We have already seen that algorithms, even using exact arithmetic, can only solve some numerical
problems approximately, to within “accuracy €”’. Thus, we say that an algorithm solving a problem

2Note that this in not the case with A-calculus
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approzimately is a machine M halting a each input € > 0, y € Y and satisfying

lem(e,y) =7~ ()l <,

where the set 771(y) is the exact solution and the norm measures the distance of ¢y, (€, y) to it.
Considering the sequence of computations starting with input y:

(ng,x) = Hy (-1, 2i-1), i=1...
ng = input node , xg = y

np = output node , zp = o (y).

We say that & > 0 is an admissible round-off errorfor (e, y) if for any sequence (n;, x;) satisfying
[(ng, 25) — Hyp(ni—1,2i-1)| < 8, ng = 1 and @ = y, then |zp — ¢ar(e, y)| < € and np is an output
node.

Let 6ar(e,y) be the supremum of the admissible round-off errors. An algorithm defined by
a machine M which solves a problem approximately is numerically stable if there exists ¢ and ¢
depending only on M such that

om(e,y) < e(s(y) + |loge| + logw(y))?,

where s(y) is the size of the input and w(y) measures the difficulty of the problem instance y.



Chapter 2

Conceptual Framework

This chapter presents the conceptual framework used to characterize algorithmic modeling. We give
an overview of this kind of shape description through the paradigm of the universes. We decompose
the modeling process into a hierarchy of abstraction levels and analyze the main aspects at each
level. Finally, we discuss the objectives of algorithmic modeling schemes.

2.1 Why Use Algorithmic Models

In the previous chapter we showed that the shape of three-dimensional objects can be modeled by
machines over the real numbers. The halting sets of these machines are the countable unions of
semi-algebraic sets, exactly the same canonical representation of geometric solids.

This brings up the following question: why use algorithmic models if they represent essentially
the same point sets as those given by geometric models? The answer is that we may want to use
algorithmic models for several reasons:

e There are objects, such as fractals, which are defined by a limit process and could only be
effectively described using an algorithm.

e There are objects whose geometry changes over time or react to external influences. This has
to be simulated using an algorithm.

e There are objects that possess a complex geometric structure which could be best captured
procedurally.

e Even for simple geometric objects, algorithmic models can be a convenience; because of the
extra power and flexibility provided by this scheme.

2.2 General Overview

In order to gain insight into Algorithmic Modeling, we will discuss it globally making comparisons
with Geometric Modeling.

13
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2.2.1 Geometric versus Algorithmic Modeling

Traditional solid modeling defines objects as regular point sets. We have seen in Part 7?7 that they
can be constructed according to a representation based on some decomposition of space. In this sense,
the representation scheme is a language in which words (sequence of symbols) are the descriptions
of geometric solids and sentences (sequence of words) are descriptions of three-dimensional scenes.

Algorithmic modeling incorporates the symbol generation mechanisms into the representation.
Consequently, instead of the static structure used in geometric modeling, we are dealing with a
dynamic structure in which the rules for generation of symbols are encapsulated into the model
itself, producing a geometric description whenever that is required. Note that such scheme allows
for adapted realizations of a shape, sensitive to external environment conditions.

The procedural representation is actually a meta-representation that introduces another step
into the model creation.

2.2.2 Levels of Abstraction

Modeling can be understood using the paradigm of the universes. The description of objects in
the computer is viewed as a chain of abstraction levels corresponding to: objects in the real (or
imaginary) world; abstract models of these objects; concrete representations of the models; and
their computer implementations. In this process, objects are idealized relative to a modeling space
and represented through a symbolic description.

In the case of Algorithmic Modeling, the model is a virtual machine, the representation is
a program and the implementation a computing system. This hierarchy of abstraction levels is
depicted in Figure 2.1.

All of the problems posed in the introductory chapter, related to the use of the universes
paradigm, can be restated in this context.

2.3 The Nature of Computation

Algorithmic models can be deterministic or stochastic depending on the nature of the computing
strategy adopted in their definition.

Note that, deterministic dynamical systems may exhibit caotic behavior and, on the other hand,
well behaved objects may be generated using probabilistic methods.

2.3.1 Deterministic Models

Deterministic models employ only predictable computational methods. All the mathematical rela-
tions between elements are fixed. This guarantees that, for a given input y, the machine M always
outputs the same result.

2.3.2 Probabilistic Models

Probabilistic models employ stochastic methods of computation which include random components.

Stochastic methods can be related either to properties of the object being modeled, to the
computational strategy or to both. An example of the first case is the mathematical characterization
of objects that are given in statistical terms, such as those with fuzzy boundaries. For this reason,
it 1s natural to model them as a stochastic process. An example of the second case 1s the Monte
Carlo method to compute integrals.
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Prysica Shapes
Universe |
Real Objects
Y
Mathematical _
Universe Algorithms . |
Virtual Machines
Y
Representation
Uﬁijverse Languages
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Y
Implementation P
Universe rocesses
Computing Systems

FIGURE 2.1: Levels of Abstraction of Algorithmic Modeling

2.4 Algorithmic Structures

Algorithmic models make use of some fundamental computational structures that allow the con-
struction of more complicated machines from simple ones.

The machine over a ring introduced in the previous chapter is associated with partial recursive
functions over R. This class of functions are generated by the basic polynomial maps and polynomial
inequalities and closed under the following operations:

2.4.1 Composition

Composition is the simplest computational structure. It corresponds to the successive application
of a sequence of functions.

2.4.2 Juxtaposition

Juxtaposition is the parallel execution of several independent computations.
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2.4.3 Recursion

Recursion is an important characteristic of the algorithmic modeling methods. It allows an effective
control of expansion, as well as, subdivision procedures. This computational structure is related to
growth processes.

2.4.4 TIteration

Iteration is used by time dependent models and by relaxation algorithms. This computational
structure is related to evolution processes.

2.5 Procedural Representations

A language is a way of expressing the notions of some domain. Every language has a set of primitive
entities which represent the basic notions of the domain and rules of composition by which compound
entities are constructed. These entities are encoded through symbols. The semantics of the language
corresponds to the meaning of the entities relative to that domain. The syntaz of the language
corresponds to the structure of the symbolic representation.

The syntactic structure of a language (i.e. the ways in which symbols can be combined) is
defined by a grammar.

Definition 2.1 : A formal grammar is formed by three types of symbols (terminals, nonterminals
and start symbol) together with a set of production rules.

Terminals are basic symbols that constitute the strings in the language.

Nonterminals are syntactic categories that denote sets of strings.

Productions are rewriting rules defining the ways in which syntactic categories may be built up. A
production is composed of a left side and a right side.

A derwation consists of replacing the symbol on the left side by the symbols on the right side.

The start symbol 1s a nonterminal selected to represent the whole language.

A grammar is context-free if the left side of every production consists of a single nonterminal
symbol. This means that productions rules can be applied independently in each symbol of a string.
A grammar is context-sensitive if symbol replacement depends on some neighborhood of the symbol.

The grammar can be used to generate a parser which recognizes the language and, thus, verify
whether a program code is syntactically correct or not.

Algorithmic models are represented by the code of a program for a given machine M. A universal
machine can simulate all possible machines, and the representation of a machine M is actually a
“program” giving the coding of M for this universal machine.

It is possible to associate classes of machines with classes of languages. This result allows:

e The analysis of classes of models through the algorithmic structures of the machines associated
with them.

e The categorization of models based on the classes of languages used to encode them.

2.5.1 Expressions

Expressions are simple languages consisting of operators and operands, combined by associativity and
precedence relations. Operators are functional elements and operands are data elements. Operators
take as input operands to output a value which can be used by another operator. The arity of an
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operator 1s the number of operands it requires. The most common are unary and binary operators.
Associativity and precedence relations define the grouping of elements, eliminating ambiguities of the
language.

The syntax of an expression language can be defined by a grammar specifying the operators
and their precedence, type of operands, as well as, the form of the expressions. Every expression
can always be converted to a standard form, £(x, y), where £ is the operator and x, y are the
operands. Expressions can also be constructed using: !

prefix form: fex ...
postfix form: .. x # f
mfiz form: x " f "y

An expression may be represented by a tree structure in which the leaf nodes are operands and
internal nodes are operators.

In the case of algorithmic modeling, we use shape expressionsin which the operands are geometric
objects and the operators are groups of transformations.

2.5.2 Parallel Grammars

In a parallel grammar the production rules are applied in parallel such that all symbols of a string
are replaced simultaneously. Also, there is no distinction in this grammar between terminal and
nonterminal symbols, which means that all strings are words in the language. The start symbol is
used to generate strings through the successive application of the production rules.

2.5.3 Constraint Languages

Constraint languages are used to express relationships. They define structural connections between
a set of elements. Therefore, they are declarative languages, as opposed to most programming
languages which are imperative.

A constraint system is composed of the following entities: primitive objects, handles and basic
relations. A handle is a reference to an object or part of an object. A constraint declaration specifies
the conditions (relations) linking sets of handles. The system may also include mechanisms to build
compound objects and constraints from simpler ones.

We construct constraint networks by associating handles in different constraint declarations.
Such a network may be represented by a graph in which the links are relations and the nodes are
handles.

In the case of algorithmic modeling, we deal mainly with geometric and shape constraints.

2.6 Implementation Methods

Program codes are static descriptions of algorithmic objects. In order to fulfill their roles and have
an effective existence in a computational environment, these sets of symbols need to be processed
by a real machine. In this way, a passive program becomes an active process (e.g. the static
representation is transformed into a dynamic object).

In practice we use a computing system whose processing power is equivalent to a machine over
R. In other words, we employ a real machine which implements the model of a universal machine
described in the previous chapter.

1This is the notation used by Mathematica.
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As we mentioned before, instead of refer to this general model, it is instructive to study models
of simpler machines with processing power to implement only a class of algorithmic models. This
allows us to 1dentify their structure, as well as their essential characteristics.

Below we will discuss some important classes of virtual machines for algorithmic modeling.

2.6.1 Stack Machines

This class of machine is essentially a simple calculator intended to process expressions. It consists of
a pushdown stack and a processor or interpreter that perform basic operations. During execution,
partial results are pushed into and poped from the stack, producing a final result in the end.

A shape calculator can be implemented with this kind of machine. In this case, the operands
define shapes and the operations are used to modify their appearance and geometry.

2.6.2 Parallel Rewriting Systems

This class of machine performs structural transformations in a representation. It is intend to process
grammars expanding a initial representation through a series of derivations. The transformation rules
are executed in parallel in each element of the representation.

The structure of this kind of machine is inherently recursive.

2.6.3 Simulation Systems

This class of machine simulates processes that evolve in time or that react to external conditions.
The simulation can be continuous or discrete. The difference lies in the way the change of state of the
system is modeled. In continuous simulation the transformations defined to vary continuously with
time (or space). In discrete simulation the transformations are defined relative to points isolated in
time (or space).

Because of the discrete nature of digital computers, even the simulation of a continuous system
must be discretized at some point. This can be done by discretizing the problem (thus, simulating a
discrete model), or by discretizing the computation of the solution of the problem (thus, simulating
a continuous model).

2.7 Modeling Techniques

Any modeling system must include facilities to allow the creation of new objects, as well as, the mod-
ification of existing ones. This set of modeling techniques defines the main form of user interaction
with the system.

In algorithmic modeling systems, this is actually a two step process: first a procedural description
of the object must be created; then, it may be used to produce geometric descriptions of the object.

The algorithmic model could represent just an individual object or a family of objects. In this
last case, the user will interact also with this procedural description in order to specify a particular
member of the family. Note that this allows for two kinds of users which manipulate the model in
different levels.

Since the algorithmic description is some sort of a program, the modeling system should be a
programming environment and the modeling techniques should include tools for program design,
debugging and testing.

The modeling system should also incorporate user interface protocols, such as the ones described
below, to facilitate control over the model.
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2.7.1 Command Based

In a command based interface, the user issues instructions directly to the system. This is usually
done using text input. The system’s response may include textual and graphical feedback.
This type of interface is well suited to shape calculator systems.

2.7.2 Control Panel

In a control panel interface, the user has access to selected parameters of the model using graphical
interaction.
This type of interface is very general and adequate for most modeling systems.

2.7.3 Direct Manipulation

Direct manipulation allows the user to interact with the model geometrically. This can be done
using kinematic or dynamic techniques. The ultimate goal is to immerse the user in a virtual world
populated by the objects being modeled.

This type of interface is desired in simulation systems.

2.7.4 Natural Selection

Natural selection allows the user to explore large parameter spaces in a efficient manner. This is
done through a set of criteria which automatically eliminates most of the elements of a family of
objects, leaving to the user the task of selecting the best among few remaining candidates.

This type of interface is indicated for evolutionary systems in which provides a mechanism for
mutation of algorithm models.
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System’s Issues

Algorithmic models encapsulate data and procedures. They are effectively realized as active pro-
cesses in the computational environment of a graphics system. For this reason, there is a close
interaction between the representation and the system. At the same time, there exists a great in-
dependency between classes of models and the system’s kernel, because the interaction obeys a well
defined protocol. This separation of implementation levels allows more flexibility and expression
power.

3.1 Procedural Objects and Computer Graphics

The intrinsic nature of procedural objects imply in a close connection between them and all subareas
of computer graphics.

3.1.1 Modeling

The functional characteristics of algorithmic models determine the geometry of the objects they
represent. In that sense, we can say that “form follows function”.

In the same way that manufactured objects are related to mechanical/industrial engineering,
the knowledge base used to develop the algorithmic models is, in general, related to a discipline that
studies the object. Physical models, botanical models, and biological models are typical examples
of models which can be converted into algorithms that generate the shape of objects.

3.1.2 Visualization

One of the main motivations of using algorithmic models in computer graphics is to produce visual
renditions of the objects they represent. For this reason, there is also an emphasis in aspects that
influence the appearance of the objects. It is not enough to model only the shape, but also the
interaction of light and matter. We need illumination models that are fine tuned for particular
classes of objects. One way to evaluate the effectiveness of an algorithmic model is realism of the
visualizations it produces, i.e. how close i1s the synthetic image from a picture of the real object.
Although, in some cases, we may not be able to describe the shape of a complex object in every
detail, 1t might be possible to model the visual texture that is produced by its geometry. This is
more than sufficient for visualization purposes.

20
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3.1.3 Animation

Algorithm models may also describe motion, as well as, the change of shape over time. Thus, we
are dealing with a dynamical system. Objects are now alive, they evolve in time interacting with
each other and with the environment. The description of this behavior must be incorporated into
the model from the very beginning and the graphics system must take that into account.

3.2 Algorithmic Descriptions

In this section, we discuss different aspects of the algorithmic descriptions from the perspective of a
modeling system.

3.2.1 Models

While in geometric modeling we have shapes with a very well prescribed geometry and topology,
that is not always the case in algorithm modeling. Therefore, the mathematical tools used for
the construction of objects in geometric modeling come from traditional areas of mathematics:
Geometry, Topology, Algebra, Approximation Theory, Numerical Analysis etc. On the other hand,
algorithmic modeling systems are pressed by the need to find new mathematical tools expanding the
class of objects that can be represented. Besides the traditional areas mentioned above, constructing
techniques in algorithmic modeling use new areas of mathematics: Dynamical Systems, Geometric
Measure Theory, Probability Theory etc.

3.2.2 Representations

Algorithmic models are represented by computational processes. They are particular incarnations
of generic procedural descriptions of a given class of objects. The modeling system must provide a
operational environment in which all individual procedural objects may coexist and interact. For
this reason, there are strong links between the modeling system and representations of the objects.

3.2.3 Implementation

The implementation of algorithmic modeling systems has been influenced by several emerging con-
cepts in Computer Science. Among them, the most important is certainly the Object Oriented
Programming. This software development technique is perfectly identified with the principles of
algorithmic modeling and allow the effective creation of its computational basis.

In the context of object oriented programming, a class of objects is composed of a state (local
memory) and a set of procedures, or methods activated by signals or messages.

Classes can be organized in hierarchical or graph structures which determine the inheritance of
methods by subclasses of a class. The makes possible the definition of objects in different levels of
abstraction.

Objects are created through instancing operations, which generates an individual representation
of an object initializing its state with particular values. Objects interact sending messages back and
forth.

These 1deas can be implemented in object oriented operating systems, such as in Smalltalk, or
Clos (Common Lisp Object System), in object oriented programming languages, such as C++, and
even using this methodology with a conventional programming language, such as C or Pascal.
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3.3 Properties of the Representation

We will not make a rigorous analysis of the properties of the algorithmic representation scheme.
We only mention that, in this respect, they appear to be in opposition to geometric representation
schemes.

Algorithmic representations are, in general:

e Ambiguous — can have multiple interpretations.
e Non-unique — can have various models for the same object.

e Relative Validity — the concept of validity is at best subjective. (i.e based on the visual
comparison between images of the synthetic and real objects).

This properties are, in part, a consequence of the fact that it is not possible in general to obtain
exact geometric representations from algorithmic models, and also, in part, a consequence of the
inherent difficulty to deal with algorithmic models in a formal manner.

3.4 General Characteristics

Algorithmic models have several characteristics in common that we discuss below.

3.4.1 Data Base Amplification

Algorithmic models have a very compact representation. The geometric data base is expanded using
procedural methods. This can be done for the whole object or for a small part of interest. The
expansion is usually performed during the execution of specific task, such as rendering.

It is desirable the use of recursive algorithms that result in a exponential growth of the geometric
data base.

3.4.2 Variable Levels of Detail

Algorithmic models are often adaptive. This allows, among other things, to control the level of
geometric detail generated by the model There are several methods to do this according to the
type of algorithmic model. The basic ones are: control of the geometric expansion, simplification of
geometry, and use of separate procedures for different levels of detail.

3.4.3 Stochastic Methods

Algorithmic models may use stochastic methods to introduce in a controlled way variations into the
model. These methods employ random processes that are based on the statistical characteristics of
the objects being modeled.

The use of tables of random numbers guarantees the efficiency and repeatability of the processes.

3.5 Conversion between Representations

Conversion between procedural representations is a difficult subject. Even in the classical theory of
computation there are only a few results.
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Ideally, we should have a canonical form for every procedural representation scheme, such that
we could make assessments about particular descriptions of a model. Also, we should be able to
convert any procedural representation into one for a universal machine.

The problem is that the computational power of virtual machines associated with different
algorithmic models is not the same. Therefore, it is not always possible to map one machine into
the other.
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Algorithmic Models

This chapter analyses the main classes of algorithmic models. A natural way to classify these models
is through their procedural structure. Using this criterium, algorithmic models can be divided into:
geometry based models; functional based models; grammar based models; and physics based models.

1. Geometry based models describe shapes by mappings of spaces. These models can be
parametrized to define a family of objects.

2. Functional based models employ functions of space and composition of those functions to create
and transform the geometry of objects.

3. Grammar based models use a geometric or topological language to define objects.

4. Physics based models employ the laws of Mechanics to determine the movement and deforma-
tion of objects.

In the following section we will discuss each one of these types of models.

4.1 Geometry Based Models

Geometry based models incorporate the data of geometric objects and the procedures that are
necessary to manipulate such data.

4.1.1 Families of Shapes

Geometric models can often be parametrized and used to represent a family of shapes. The al-
gorithms are the same for a given family. Parameters are used to specify an individual element
of the family. The interaction with the model is through a communication protocol defining what
operations can be performed with it.

A simple example can illustrate these ideas more concretely:

Example 4.1 (Sphere)

o Parameters:

— geometry: center, radius

24
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— appearance: color, transparency
e Operations:

— transformation: translation, rotation, scaling
— visualization: wire-frame, shaded

— query: ray intersection, surface normal, volume

As we can see, the parameters determine completely the object. Operations define what can be
done with the object and may have colateral effects (e.g. generation of an image). Some operations
return a value.

This type of representation has many advantages: It allows to isolate implementation details
from the model definition. It creates a mechanism to exploit particular aspects of a family of objects
in many operations (for example, in rendering). It permits a wide choice of parametrizations,
contributing to a natural and intuitive way to specify the objects. It makes possible using, in the
same model, multiple forms of geometric description each one most appropriate to a type of problem
(for example, a shape can be described parametrically and implicitly). Tt establishes a uniform
interface with the graphics system.

4.1.2 Generative Models

Generative models are objects defined by the action of a transformation group of k£ parameters,
T :R™x R¥ = R" on a parametric function I : RY — R™ called generator. The resulting object is
given by the parametric map T(F(z); ¢) from R'** to R™ where [ and k are respectively the degrees
of freedom determined by the function F' and the transformation 7.

This type of model is a procedural generalization of parametric sweep models, (Snyder and
Kajiya, 1992).

Example 4.2 (Sweep Surface) Consider the surface S(u,v) formed by applying the continuous
transformation & : R? x R — IR3 to the parametric curve v : R — R

S(u,v) = 6(y(u),v).

An advantage of this scheme is that the generative modeling representation is closed under the
composition operations above, resulting in a powerful algorithmic model.

4.2 Functional Based Models

Functional based models describe objects through functions of space. A basic shape is defined by one
function and may be altered by the application of other functions. In this type of model, primitives
and transformations are combined using functional composition.

4.2.1 Textures

A texture is amap ¢ : U C R™ — R"”, where R” is usually identified with a color space and R™ is
the support space of the texture (texture space). Given a function f:V — U, where V is a subset
of an object space, we call texture mapping the composition f ot : V — U, that associates to every
point & of the object with an element of the vector space R”. See Figure 4.1. When U is a subset
of R? tis a 2D texture. When U is a subset of R3, ¢ is a 3D texture.
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FI1GURE 4.1: Texture Mapping

Textures can be used to define various attributes, including the microgeometry, of an object. In
the following, we give some examples of procedural texture mapping in algorithmic modeling.

One example is the use of Fourier synthesis to produce textures. This method can be applied in
the modeling of clouds and terrain, (Gardner, 1985), (Gardner, 1984). In the first case, the texture
is interpreted as a density function. In the second case, it is a height field.

Another example of procedural texture involves a noise function. One way to construct this
function is to define a random variable over an integer lattice of space; the function value on other
points 1s computed by interpolation. The noise function is used as a basis in the creation of other
functions through a composition process. Note that it plays a similar role as the sinusoidal function
in a Fourier series. The textures generated by functional composition of noise have been used very
successfully to model the appearance of marble, wood and other materials, (Perlin, 1985).

Mapping can also be used to define the microgeometry of surfaces. This type of model, called
bump mapping, simulates the appearance of surface irregularities. The effect is obtained by a pertur-
bation of the surface normal during the computation of the illumination function. In this way, the
model behaves as if the original surface was slightly deformed to be compatible with those normal
vectors, (Blinn, 1978). An alternative to bump mapping is the displacement mapping which actually
modifies the surface geometry, (Cook, 1984).

4.2.2 Hypertexture

Hypertexture is based on solid texture functions. These functions are used directly to define the
geometry of the object, rather than to define shape attributes as in texture mapping, (Perlin and
Hoffert, 1989).

This algorithmic model works with two kinds of functions: object density function, D, which
describes the density of a shape over space; and density modulation functions, f;, which are used to
control various aspects of the object’s spatial characteristics. Hypertexture is created by successive
application of modulation functions f; to a shape density function D(z):

H(D,x) = fu(... fi(fo(D(x)))).

Note that, although H(D,x) = ¢ seems equivalent to the implicit description of a surface,
we cannot guarantee that H always defines a valid surface. Therefore, hypertexture cannot be
considered strictly a geometric modeling scheme.

The hypertexture method have been used very effectively to model objects whose local geometry
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1s so complex that cannot be represented by a bidimensional surface. Typical examples include fur
and hair.

4.3 Grammar Based Models

Grammar based models employ a language to define the structure of an object. The elements of
this type of model constitute an alphabet with which valid representations (words) are generated.
In computer graphics two kinds of formal grammars are used: geometric and topological. The
words in a geometric grammar contain all necessary information to describe the shape of an object.
The words in a topological grammar contain only connectivity information and must be augmented
with geometric meaning in order to fully describe a shape.
This section studies applications of both of these grammars.

4.3.1 Geometric Grammars

Geometric grammars are “shape grammars”. The alphabet, in a formal geometric grammar, is
composed of basic shapes that are combined recursively to produce arbitrarily complex shapes. This
model was developed in connection with fractal objects. Fractals can be classified into deterministic
and random.

Deterministic fractals are naturally defined by a shape grammar. Their construction starts with
an tnitiator that is transformed by generators. In this scheme, the initiator is the start symbol and
the generators are the production rules of the grammar.

Random fractals can be generated by a displacement subdivision algorithm, (Fournier, Fussell
and Carpenter, 1982). The computational process for this method can be specified by a shape
grammar with the addition of a probabilistic component. This type of algorithm introduces random
perturbations with the right statistical properties at increasingly smaller scales of the object. The
fractal dimension determines the relative magnitude of the perturbation in each scale.

An important theoretical issue concerns the conjecture that all fractals can be generated by a
shape grammar, (Smith, 1984a).

4.3.2 Topological Grammars

Topological grammars are “graph grammars”. The alphabet, in a formal topological grammar, is
composed of link elements that are arranged to define the connectivity of an object. This structure
must then be interpreted in a geometry. The models generated by topological grammars are also
called graftals, (Smith, 1984b).

A shape is generated in two steps by this method. The first step corresponds to the application
of the grammar to produce the topological structure of the object. The second step consists in
the interpretation of this structure to create the geometry of the object. This interpretation step
requires the use of: werisimilitude rules which describe the intrinsic geometric characteristics of a
class of objects and also tropism rules which regulate the influence of environmental factors to the
shape of the object.

Graftals have been applied mainly to the modeling of biological systems, such as trees and other
plants. The formal languages known as “L-Systems” were developed for this purpose, (Prusinkiewicz,
Lindenmayer and Hanan, 1988). Languages of this class are based on parallel graph grammars. Type
0L languages are context-free. Types 1L and 2L are sensitive to a neighborhood of, respectively,
one and two symbols. These languages may also include parenthesis (“Bracketed L-Systems”) that
incorporate branches in the topological structures.
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4.4 Physics Based Models

Physics based models use the methods of mathematical physics to describe the shape and motion
of objects. In this context, the main parameters in the definition of the models have a physical
nature, like forces and torques. Moreover, the models are time dependent because, even if we are
only interested in static configurations, the equations expressing the laws of the physical system
must be integrated over time, such that forces produce the desired results.

Physics based models employ a simulation mechanism in order to compute the differential equa-
tions defining the system. In this respect, the problem or the solution must be discretized to allow
for the numerical computation. The discretization process results in a system of linear equations
that should be solved.

The techniques behind this type of models are well known: Optimization, Differential Equations,
Numerical Analysis.

4.4.1 Particle Systems

A particle system consists of point masses that move under the influence of forces. This type of model
is used to represent complex objects and phenomena which can be decomposed into (or governed
by) a set of particles. In this way, fuzzy objects, such as fire, rain, foliage, may be described by a
clump of primitive elements, (Reeves, 1983). Also, non-rigid objects, such as cloth, may have their
shapes and motion determined by particles which act as control points, (House, Breen and Getto,
1992).

Particle systems may be classified according to the type of interactions between particles: In
uncoupled systems, the forces acting on a given particle are independent of other particles in the
system. In coupled systems, internal forces are the result of interaction between particles. Coupled
systems may be further subdivided into systems with fized and dynamic coupling.

In a particle system, particles are created, exist during a certain period of time, and are exter-
minated. The attributes of a particle, including its shape, may change over time according to the
evolution of the system.

This type of algorithmic model is composed of three basic elements: the start values, the equa-
tions of motion, and the simulation mechanism. The start values define the initial configuration of
the system, they are the seed data for the model. The equations of motion describe the evolution
laws of the system. The simulation mechanism corresponds to the algorithmic substrate of the
model. It is responsible for computing the state of the system over time. This process is executed
repeatedly for each time step according to the granularity of the simulation.

A characteristic of particles systems 1s the use of stochastic techniques. This is a way to sim-
ulate complex behavior based on simple rules. Random processes may influence particle attributes
determined by statistical properties of the object.

4.4.2 Deformable Models

Deformable models describe continuous non-rigid objects which have their shapes modified by the
action of forces, (Terzopoulos et al., 1987). The physical model can simulate perfectly elastic ma-
terials, as well as, deformable inelastic materials. In this last case, material properties, such as
viscoelasticity, plasticity and fracture, must be considered, (Terzopoulos and Fleischer, 1988).

The algorithmic model, usually, involves the computation of minimum energy configurations
that may be solved using variational or optimization techniques.
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4.4.3 Constraint Systems

Constraint systems are very general and applicable to a variety of modeling problems They are par-
ticularly useful to describe compound objects structured by mechanical linkages, (Barzel and Barr,
1988). As an example, we could mention articulated objects, such as robots, in which constraints
are used to govern the work of different types of joints, (Wilhelms and Barsky, 1985). Another in-
teresting application is the construction of self assembly structures, in which constraints make sure
that parts are in the right places.

Note: Autonomous Models

Autonomous models go beyond the scope of algorithmic modeling. They use methods of Artificial
Intelligence and would be better understood in the context of behavioral modeling.

Animated Groups

Animated groups are a set of individual objects that together act as coherent whole. The algorithmic
model associated with this type of system concerns the description of behavior and interaction among
group members, (Reynolds, 1987)

Some of the main characteristics of animated groups are:

e Complex geometry of the members.
e Actions of the members are specified by a behavior model.
e The interaction between members define the action of the group.

This type of model makes heavy usage of communication and synchronization mechanisms. It
also requires the use of spatial searching techniques.



Chapter 5

Examples

This chapter gives a few examples of algorithmic models. In spite of their extreme simplicity, we
will be able to identify most of the concepts introduced in this part.

The procedural description of the objects will be given in two forms: one using a language for
a virtual machine specific of each object’s class; and another using a general programming language
assoclated with a universal machine. These two descriptions are totally equivalent and a simple
transformation converts one into the other. We hope, this will make explicit the algorithmic nature
of the models and, at the same time, will clearly draw the fine line separating the notions of data
and programs.

The examples roughly correspond to the classes of algorithmic models analyzed in the previous
chapter. The first one is a geometric object, a circle. The second one is a texture object, a firewall.
The third one is a fractal object, the Koch’s curve. The last one is a particle system, a starfield.

These objects are all two dimensional and the procedural descriptions given below are intended
to generate a picture of them. This is how algorithmic models are normally used in a graphics
system — they interface directly with the rendering routines to produce an image. Note that, if a
geometric representation is required, the rendering routines can be replaced with functions to create
the appropriate data structures.

This use of procedural objects is becoming a standard practice in the world of 2-D graphics.
Several drawing packages employ an algorithm model (Postscript) as their external representation.
As a result, the differences between data and programs can get even fuzzier, e.g. data is used to
generate a program and programs are interpreted as data.

5.1 Circle

A circle is a simple geometric object. It can be represented as a primitive in parametric or implicit
form. The parametric representation will be used in the example.

5.1.1 Geometric Representation

A circle is naturally specified by its center and radius. Therefore, its representation as a geometric
primitive is given by the 3-vector (#,y,r), which in a programming language may be coded as:

def circle = {double x, y, r;}

30
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This pure geometric representation scheme requires that the knowledge to manipulate the math-
ematical model of the circle is encoded somewhere in the graphics system. For example, the para-
metric form can be used to draw it.

draw_circle(c, n)

{
moveto(c.x + c.r, ¢c.y);
for (¢t = 0; t <= 2PI; t += 2PI/n)
drawto(c.x + cos(t) * c.r, c.y + sin(t) * c.r);
¥

5.1.2 Object Representation

The representation of the circle as a data structure together with the procedural substrate required
to manipulate it can be encapsulated in a computational description of this family of objects.

(class circle
(state x y r)
(method draw (n)
((send graphics moveto (+ x r) y)
(repeat (send graphics drawto (+ x (* (cos t) r) (+ y (* (sin t) r)))
(t 0 2PI (/ 2PI n))))))

The virtual machine of an object-oriented system has the following structure:

m-object_sys()
{
loop {
switch (read(input)) {
case DEF_CLASS:
if (compile(class_def))
install_dict(class);
case NEW_OBJ:
if (lookup(class_name))
instantiate(obj, class);
case SEND_MSG:
if (valid(msg, obj))
evaluate(method(msg,obj));
default:
error();

}

To draw a circle using this scheme, first an instance of a circle object is created ((new circle
1 2 3)), then the message draw is sent to the object.

(send (new circle 1 2 3) draw 36)
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5.1.3 Universal Machine Representation

The algorithmic model of the circle primitive consists of the set of procedures used to manipulate
the geometric representation.
In order to generate the drawing we execute the program:

draw_circle(1, 2, 3, 38);

5.2 Fire

Fire has a fuzzy geometry that can be modeled as a density function. Its algorithmic description
uses a procedural texture. This functional based model can be implemented by a stack machine

5.2.1 Stack Machine Representation

The procedural representation is in a form of a posfix expression language similar to Postscript
(Adobe Systems, 1986).

The code for a fire texture is

dup 3 1 roll turbulence add colormap

where dup and roll are stack operators, add i1s an arithmetic operator and colormap and turbulence
are texture operators. turbulence is based on the noise primitive (Perlin, 1985).
The stack virtual machine has the following structure:

m-stack(code, args)

{
push(args);
while (t = get_token(code)) {
if (t.type == NUMBER)
push(t.value);
else if (t.type == OPERATOR)
exec(t.code);
else
error();
}
return pop();
}

The implementation of operators usually involves manipulating the stack, where the values of
operands are stored. An example is the add operator

add ()
{

push(pop() + pop());
¥
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5.2.2 Universal Machine Representation

The representation of the texture function for a universal machine is:

firewall(x,y)
{
return colormap(y + turbulence(x,y));

}

5.2.3 Texture Generation

In both cases, the density array i1s generated evaluating the texture function at a set of points of its

domain [0, 1] x [0, 1].

texture(f)
{
for (u=1=0; u<=1; u += uinc, i++)
for (v = j = 0; v <= 1; v += vinc, j++)
t[i]1 3] = f(u,v);
¥

where f 1s m—stack(firecode, (u,v)) in the first case and firewall(u,v) in the second case.

5.3 Koch’s Curve

Koch’s curve is a self-similar deterministic fractal. Its algorithmic description uses a formal geometric
grammar. The associated virtual machine 1s a rewriting system which can be implemented by a
recursive procedure.

5.3.1 Rewriting System Representation

The grammar representation of the Koch’s curve is:

I =X
R:=X->X+X-X+X

where I is the initiator (start symbol), and R is the generator (production) .

INote that we could have more than one production
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The virtual machine has the following structure:

m_rewriting(word, productions, n)

{
foreach (¢ in word) {
foreach (r in production) {
if (¢ == r.right)
append(r.left, new_word);
else
copy(c, new_word);
¥
¥
if (n++ < MAX_RECURSION)
m_rewriting(new_word, productions, n);
else
draw_word(new_word, n);
¥

To draw an approximation of the fractal curve we use a procedure similar to the one adopted
by the LOGO language. The final string is interpreted as follows: symbol X corresponds to a
line segment of length 1/n; symbol + corresponds to a positive rotation of 60 degrees; symbol -
corresponds to a negative rotation of 120 degrees. The drawing routine is:

draw_word(word, n)

{
foreach (¢ in word) {
switch (c) {
case X: draw_line(1/n);
case +: turn(s0);
case -: turn(-120);
¥
¥
¥

To generate the model, we invoke the rewriting machine with the representation of Koch’s curve:

m_rewriting((X), (X -> X + X - X + X), 0)
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5.3.2 Universal Machine Representation

The algorithmic model of Koch’s curve can be represented in a universal machine by the following

program:

x_code(angle, n)
{
if (n++ < MAX_RECURSION) {
x_code(60, n);
x_code(-120, n);
x_code(60, n);
x_code(0, n);
} else {
draw_line(1/n);
turn(angle);

}

In order to generate the drawing we execute the program:

x_code(0, 0);

5.4 Starfield

A starfield is composed of bodies that move independently according to laws of motion. Its algorith-
mic description is that of a particle system. The virtual machine is an event-based simulation system
which can be implemented using a iterative structure. The system also incorporates a stochastic

component.

5.4.1 Simulation System Representation

The description of the starfield for the simulation system is:

MODEL: starfield
POPULATION: num_particles
RUN_TIME: num_frames
EVENT: out_of_frame
kill_particle;
EVENT: new_frame
clear_image := clear();
draw_particle := plot(p.pos);
update_particle := p.pos += p.vel;
RANDOM:
p-pos := (p_mean, p_deviation);
p-vel := (v_mean, v_deviation);
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The virtual machine for the simulation system has the following structure:

m-simulation(commands)

{
parse commands;
generate population;
do {
until ((e = event_list()) !'= NULL)
process(e);
} while (runtime < num_frames);
¥

To generate the starfield we invoke the simulation machine with the commands describing the
particle system.

m_simulation(starfield)

5.4.2 Universal Machine Representation

The model of a starfield can be represented in a universal machine by the following programs:

particle_system(num_particles, num_frames)
{
parallel (num_particles) {
particle(random(p_mean, p_deviation)
, random(v_mean, v_deviation));

¥

for (num_frames) {
clear();
signal(new_frame) ;

¥

particle(pos, vel)
{
while (wait(new_frame)) {
if (out_of_image) {
exit();
} else {
plot(pos);
pos += vel
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In order to generate the starfield we start the particle system.

particle_system(num_part, nun_frames);

37
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