
Part I

Algorithmic Modeling

Luiz Velho

IMPA � Instituto de Matem�atica Pura e Aplicada

and

University of Toronto

�

Abstract

Algorithmic modeling �or procedural modeling� is a recent research area in computer graphics
which encompasses several methods extending traditional geometric modeling�

Man�made objects are mostly constituted of connected rigid bodies that are well represented by
geometric solids� On the other hand� there are in nature extremely complex objects that can have a
combination of the following characteristics� irregular geometry� fuzzy boundaries� inhomogeneous
material� anisotropic properties� As examples of objects in this category� we �nd� terrain� plants�
clouds� liquids� �re and the living creatures� These objects are part of our environment and� thus�
are very familiar to all of us� For this reason� it is even more di�cult to represent in the computer
their form �visualization� and movement �animation��

Despite its e	ectiveness to describe manufactured objects� geometric modeling techniques are�
in general� inadequate to fully describe organic forms and other natural phenomena� One of the
main motivations of algorithmic modeling has been the challenge to capture the shape and behavior
of complex objects from the real world�

This part introduces the theory and techniques of algorithmic modeling from the point of view
of a conceptual and integrated framework�

Chapter �

Models and Machines

This chapter investigates mathematical models that can be used to describe complex shapes� Our
goal is to de�ne an abstract framework which extends geometric modeling and provides greater
expressive power� allowing for a representation of these objects in the computer�

While simple shapes can be described by means of analytical expressions� complex ones may
require a more powerful mathematical description� The concept of a mathematical function� i�e� an
entity that takes a value as input� executes a procedure and outputs another value� give us such
a mechanism� The procedure is the embodiment of an algorithm and consists of all steps that are
necessary to perform the computation�

Since we are interested in objects from the real world� we must be able� essentially� to deal with
point sets embedded in the continuous three dimensional space� Consequently� we need functions to
compute with the real numbers� As we will see� a mathematical model for this type of function is
given by a machine over the �eld of reals�

It is important to note that the sets computable by this machine are the denumerable family of
semi�algebraic sets� Based on the results in Part � this indicates that our algorithmic model indeed
contains the geometric models� Also� by the Stone�Weierstrass theorem� these sets provide good
approximations to most reasonable shapes found in nature�

��� Shape Modeling

As we have seen in Part ��� there are two forms of geometric speci�cation� direct and indirect�
The direct form de�nes the geometry explicitly by a parametric equation x
 f�u�� where x � R�

is a point of the ambient space and u � U � Rk is a point of a subset of a parameter space with the
same dimension k as the object� The mapping f � Rk � R� makes it possible to generate all the
points of the object� as long as U is known�

The indirect form de�nes the geometry implicitly by an equation f�x�
 c� where x is a point
of the three dimensional space and c is a constant or an interval of the real line� The mapping
f � R�� Rmakes it possible to determine which points of the ambient space belong to the object �

�

�Note that the characteristic function of the object is trivially de�ned from the implicit equation�

��x� �

n
� if f�x� � c

� otherwise

�

CHAPTER �� MODELS AND MACHINES �

These two forms of de�ning geometry are illustrated in Figure ����

0 2

r
p

c

|c-p| = r
2

f

π

θ

Figure ���� Direct and indirect forms

In summary� geometric models are de�ned� in one way or another� by the above equations
or some combination of these equations� In this case� the functions f are restricted to analytic
expressions �actually� in practice� we work with low degree polynomials� such as quadrics or cubics��

From the previous observations� it becomes clear that geometric modeling can be extended
naturally if the restrictions imposed on f are eliminated and arbitrary functions are allowed� This
general form of shape modeling� thus� requires a mathematical model of functions over the real
numbers� More speci�cally� in the parametric case f is a function of Rk into R� and� in the implicit
case� f is a function of R� into R�

��� Machines over the Reals

A model for machines over the real numbers comes from the theory of computation and complexity of
continuous algorithms �Smale� ���
�� This new interdisciplinary �eld integrates ideas from classical
computer theory with methods from numerical analysis in order to develop a formal treatment of
problems de�ned over continuous domains� Central to this discipline is the concept of a universal
machine over an ordered ring� developed by �Blum� Shubb and Smale� ������ which plays in the
theory of continuous computation the same role as the Turing machine in the theory of discrete
computation �where the ring is Z��

De�nition ��� � A �nite dimensional machine M over a ring R consists of three spaces �input
space I� state space S and output space O�� together with a �nite directed connected graph with
four types of nodes �input� output� computation and branch�� with associated maps and labeled
�� � � � � N �

The spaces I� S and O are� respectively� of the form Rl� Rn and Rm� where Rk denotes the
direct sum of R with itself k times�

The nodes of M are of the following types�

Input node� has no incoming edge and only one outgoing edge� ��� It is associated with a
linear injective map I � I � S�

CHAPTER �� MODELS AND MACHINES �

Output node� has no outgoing edges� It is associated with a linear map O � S � O�

Computational node� has a single outgoing edge� It is associated with a polynomial map
g � S � S�

Branch node� has two outgoing edges� ��k and ��k � It is associated with a polynomialh � S � R�
which speci�es the next node according to the conditions h�x� �
 and h�x� �
�

Figure ��� shows a diagram of the machine M and its nodes�

Output Node, N

O: S -> O

Input Node, 1

I: I -> S

β1
. . .

β

Computation Node

g: S -> S

. . .

Branch Node, n
h: S-> R

β+β−n n

h(z) >= 0h(z) < 0

.

Branch Node, n

Figure ���� The nodes of a machineM over R �after Blum�

Let N
 f�� � � � � Ng be the set of nodes of M � where � is the input node and N is the output
node �assuming that there is only one output node�� A machine constructed as above is said to be
in normal form�

Proposition ��� Any machine M over R has an equivalent one in normal form�

The space of node�state pairs N�S is called the full state space of M � The machine is associated
with the computing endomorphism

H � N � S � N � S

of the full state space to itself� H maps each node�state pair �n� x� to the unique next node �
next state pair ���n� x�� g�n� x��� where � gives the next node and g the new state� This scheme is
determined by the graph of M and the associated maps of its nodes�

The computing endomorphism is a very important tool that� among other things� can be used
to de�ne the input�output map �M of a machine M �

CHAPTER �� MODELS AND MACHINES �

The inner workings of M are revealed by �M in the following way� A value y � I is input into
M by x�
 I�y�� Then� M performs the sequence of computation steps� x�
 H�x��� � � � � xk

H�xk���� � � �� until a node�state pair �N� xT � is produced� If M ever halts� it outputs a value
z
 O�xT ��

When the above sequence �xk� is �nite� M stops on input y in time T with output O�xT � and
�M �y� describes a halting computation� When the sequence �xk� is in�nite� M does not halt on
input y� and �M �y� is not de�ned�

The set �M of all points y � I on which M halts is called the halting set of M �
A map � � Y � Rl � Rm is computable over R if and only if there is a machine M over R such

that �M
 Y and �M
 � for all y � Y �i�e� M halts on every element of the domain of ��� In
such case� M is said to compute ��

Two machines M� and M� are called equivalent if they compute the same map ��
It is natural to interpret M as a discrete dynamical system� In this context� we study the orbits

of initial points z�
 ��� I�y�� under iterates of H� The qualitative behavior of M can be analyzed
through the phase portrait of �M � In this way� although the graph of M may be quite complicated�
we can represent it in a simple way� as shown in Figure ����

y

z <- (1, I(y))

(n,x) = z <- H(z)

O(x)

Branch

n = N n = N/

Input

Compute

Output

Figure ���� Canonical schemata for a machineM �after Blum�

��� Decidable Point Sets

A set S is decidable if its characteristic function �S is computable� otherwise it is undecidable� �Blum
and Smale� ������ Intuitively� a set is decidable� relative to a universe U � if there is an e	ective
procedure that decides whether or not any given element u � U belongs to the set�

CHAPTER �� MODELS AND MACHINES �

Proposition ��� �Blum�Smale� A set S � Rl is �decidable over R� if and only if both S and its
complement S� are halting sets of machines over R�

Essentially� we need to construct for S a decision machine M� which computes

� � Rl � f
� �g� ��y�
 � i	 y � S�

This can be done by connecting together two machines M and M �� which� respectively� have as
halting sets S and its complement S� on Rl� The input is fed simultaneously into M and M �� By
construction� only one of them will halt� If M halts� the output is �� if M � halts the output is
 �see
Figure �����

z

M M’

0 1

if M halts if M’ halts

Figure ���� Decision Machine

De�nition ��� A set S is called �semi�decidable� �undecidable� if it is the halting set of a machine
M over R� but its complement S� is not�

This means that� the decision machine M� on input y will output � if and only if y is in S� but�
if y is not in S there are no guarantees that M� will halt�

Proposition ��� �Blum�Shub�Smale� The halting set of a machine M over R is a disjoint count�
able union of semi�algebraic sets� The input�output map �M is a piecewise polynomial map�

The proof of this proposition is somewhat involved� but the basic idea is simple� Since� besides input
and output nodes� M has only computation and branch nodes� the path of any halting computation
can be streamlined to a series of polynomial maps� The halting set �M
 �V� � where V� is de�ned
by polynomial inequalities of the type

g��� � � gn�I�y��� �
�

For more details we refer the reader to �Blum� Shubb and Smale� ������
The above results clearly establish� in this theory� a link between the notions of decidability

and computability� Furthermore� they reinforce the conclusions of Part that semi�algebraic sets are
natural candidates to be used in the representation in geometric and solid modeling�

CHAPTER �� MODELS AND MACHINES �

Also� from the direct relationship between the characteristic function of a point set and the
speci�cation of a shape by an implicit equation� f�x�
 c� it follows that the computability of f
implies the decidability of f���c�� The validity of this assertion for the parametric case is immediate
because� in that case� the halting set S is the entire domain of the map�

��� The Machine at Work

Now we will show through some examples� the application of this model of computation over the
reals to de�ne geometric objects�

����� Parametric Surfaces �Local�

In a parametric surface patch� M has only one computation node and its associated spaces are as
follows� I
 U � R� and S
 O
 R�� When the surface is smooth� I�y� is the natural injection�
g�x�� is a di	eomorphism and O�x�� is the identity map�

Example ��� �Tensor Product Bezier Patch� A cubic Bezier patch is de�ned by a � � � net
of control points pi�j � R�� The parameter space U is the unit square �
� ��� �
� ��� g is a tensor
product Bezier polynomial

g�u� v�
�

�X
i��

�X
j��

pi�jBi���u�Bj���v��

where Bk�l�u� are the Bernstein polynomials�

����� Boundary Decomposition Schemes

Because it is not possible to �nd a global parametrization for most surfaces� we have to decompose
them into patches� such as in Example ���� These pieces are joined by a gluing operation� covering
the surface completely� This type of scheme is required when the surface does not have the same
topology as R��

Note that� some care must be exercised if the surface is not a two�dimensional manifold�

����� Implicit Solids

An implicit solid is the set of points x � R� which satisfy the equation f�x� � c� When f is a
polynomial over R�� the point�set is semi�algebraic and� as we demonstrated� the halting set of a
machine over R�

����� CSG Objects

Constructive Solid Geometry objects are generated from basic primitives by a �nite process of taking
unions ��or�s��� intersections ��and�s�� and complements ��not�s��

Proposition ��	 Any algebraic CSG object can be expressed as a 	nite union of basic semi�algebraic
sets�

A basic semi�algebraic set is de	ned as the set of x � Rn satisfying basic conditions of the type�

P �x�

Qi�x� �
�

CHAPTER �� MODELS AND MACHINES �

where P and Q are polynomials�

Fact
 The proof is based on the following facts� If P and Q are polynomials� then

�� P �x�

 � Q�x�

 i	 P ��x� � Q��x�

�

�� Q�x� ��
 i	 � Q�x� �
 j Q�x�

�

�� P �x� �

 i	 � P �x� �
 j P �x� �
�

Proof
 Intersections are eliminated using ��� and complements using ��� and ����
This demonstrates that an object described by the CSG scheme can be reduced to a simple map

computable on a machine over R�
On the other hand� an arbitrary CSG expression can be trivially converted into a machine over

R with exactly the same tree structure using the fact that for P �x� �
� Q�x� �
� the following
equivalences apply�

P �Q
 min�P�Q��

P 	Q
 max�P�Q��

P nQ
 P 	Q
 max�P��Q��

��� Beyond Geometric Models

The examples above indicate that our algorithmic modeling methods encompass the traditional
geometric modeling techniques�

At this point� we need to answer the following crucial questions�

 Can algorithmic methods model complex shapes that are out of the scope of geometric modeling
techniques�

 If so� what are the classes of objects that can be described by algorithmic methods�

In the rest of this chapter we will investigate these two issues and their implications�

����� Fractals

Fractals are examples of highly irregular objects that cannot be constructed using classical geometric
modeling techniques� �Mandelbrot� ������ A fractal is naturally described by a limiting process� well
suited to implementation using a recursive algorithm� �Peitgen and Saupe� ������ For this reason�
we would expect that a machine over R is a good candidate to model a fractal� On the other hand�
the theorem below is a bit discouraging�

Theorem ��� Halting sets of machines over R have integral Hausdor
 dimension�

Proof
 This is a direct corollary of Proposition ���� It follows from the fact that semi�algebraic sets
�and� hence� countable union of semi�algebraic sets� have integral Hausdor	 dimension�

We will see through an example that� although a machine over R cannot be used to compute
fractals� it can be used to compute approximations of them�

CHAPTER �� MODELS AND MACHINES ��

Example ��� �Julia Sets� The set of all points z whose orbits are caotic �not stable� under the
action of a complex dynamical system g�z� is the Julia set of g� These points are contained in the
complement of the basin of attraction of g �points moving to a contracting neighborhood��

Most Julia sets are fractals� Consequently� since fractals have fractional Hausdorf dimension�
most Julia sets are undecidable� But� because the complement of a Julia set is �semi�decidable�
�i�e� the halting set of a machine over R�� it is possible to construct a machine M that computes
approximations of a Julia set J �

The idea is to employ a decision machine as in Figure ����

(z,0)

(z,t) <- (g(z),t)

0

1

h(z) < 0 ?

t > T ?

yes

yes

no

no

Figure ���� Julia set machine

From the theory of complex analytic dynamics� there is an � �
 and a polynomial h such that
h�z� �
 if and only if z is in a contracting ��neighborhood of the dynamical system g�z���Blanchard�
������ This allows us to identify the points that belong to the complement of J �

Using only the above test� M will halt in a time t � � if z �� J � otherwise it will loop forever�
Since points closer to the Julia set will take longer to be attracted� an approximation of J is given
by the set of points that remain undecided after a large number of iterations T � This approximate
method is called escape time algorithm by �Barnsley� ������

There are a couple of observations that need to be done in relation to the computation of fractals
and machines over R� First� the geometry of a fractal set is so complex that cannot be computed ex�
actly� Second� a fractal has a precise mathematical characterization that can be e	ectively described
by a machine over R� In a sense� M gives the best possible representation of a fractal� It allows
us to capture the essential aspects of these objects using a direct computational scheme� Third� a
fractal shape can be approximated to any degree of accuracy by a union of semi�algebraic sets�

Actually� we can make a much stronger and general a�rmative�

CHAPTER �� MODELS AND MACHINES ��

Theorem ��� �Stone�Weierstrass� Every continuous function f � S � R of a compact metric
space S may be represented by a sequence of polynomials converging uniformly to the function�

Proof
 See ����

��� Extending M

So far� we introduced a �nite dimensional model of a machine over a ring� It is powerful and very
general� allowing us to talk about computation over various domains� In particular� it includes the
two important cases� R
Z� the integers and� R
 R� the real numbers� In every case�Zis a natural
subring of R�

In order to be complete� and allow for a description of arbitrary algorithmic shapes� this model
has to be further developed in several directions�

The model can be extended to include the notion of in	nite dimensional machines over R� This
makes possible the underlying spaces to be R�� the in�nite direct sum space over R� R� can be
thought of as the space of �nite but unbounded sequences of R� because a point y
 �y�� y�� � � �� � R�

satis�es yk

 for k su�ciently large� Consequently� all we need to do is to add a �fth node to the
�nite dimensional machine to get this extra power� The 	fth node allows accessing of coordinates of
arbitrarily high dimension�

The model can be augmented to incorporate probabilistic algorithms� This requires the addition
of a coin tossing node with an associated probability distribution�

The model can be modi�ed to be able to deal with parallel and distributed computation� This is
a signi�cant change of perspective and requires a formalization of new concepts such as permanency
�process� and identity �reference� �Milner� ������

��� Discussing the Model

A question one may ask is� Why go into the trouble of developing a continuous model of a machine�
if the classical theory of computation provides the Turing machine� a discrete model that perfectly
re�ects the nature of a digital computer�

The problem is that a Turing machine cannot be used to investigate the type of models required
for the description of shapes� The theory of digital automata is a chapter of formal logic� It�
therefore� emphasizes combinatorics rather than analysis� This prevents us to take advantage of
calculus and other tools of continuous mathematics in our models� Furthermore� the G�odel coding
of a Turing machine destroys the algebraic structure of the underlying problem spaces� eliminating
also the possibility of using algebra � �

So� we need a model of a continuous machine
In spite all those reasons� one can argue that this kind of model is a poor abstraction of the

digital computer� How can we input an arbitrary real number into such a discrete machine� Well�
this actually cannot be done� In practice the machine can only take in a �nite number of decimals�
Nonetheless� this limitation does not invalidate our model� The fact that we have to work with
rational numbers is not a problem� since they approximate real numbers to a high degree of accuracy�
Of course� we have to be careful about round�o	 errors� This is one of the main subjects of the
Numerical Analysis and may be incorporated into the model of a machine over R�

We have already seen that algorithms� even using exact arithmetic� can only solve some numerical
problems approximately� to within �accuracy ��� Thus� we say that an algorithm solving a problem

�Note that this in not the case with ��calculus

CHAPTER �� MODELS AND MACHINES �	

approximately is a machine M halting a each input � �
� y � Y and satisfying

jj�m��� y� � ����y�jj � ��

where the set ����y� is the exact solution and the norm measures the distance of �m��� y� to it�
Considering the sequence of computations starting with input y�

�ni� xi�
 HM �ni��� xi���� i
 � � � �

n�
 input node � x�
 y

nT
 output node � zT
 �M �y��

We say that 	 �
 is an admissible round�o
 error for ��� y� if for any sequence �ni� xi� satisfying
j�ni� xi� �HM�ni��� xi���j � 	� n�
 � and x�
 y� then jxT � �M ��� y�j � � and nT is an output
node�

Let 	M ��� y� be the supremum of the admissible round�o	 errors� An algorithm de�ned by
a machine M which solves a problem approximately is numerically stable if there exists c and q
depending only on M such that

	M ��� y� � c�s�y� � j log �j� logw�y��q �

where s�y� is the size of the input and w�y� measures the di�culty of the problem instance y�

Chapter �

Conceptual Framework

This chapter presents the conceptual framework used to characterize algorithmic modeling� We give
an overview of this kind of shape description through the paradigm of the universes� We decompose
the modeling process into a hierarchy of abstraction levels and analyze the main aspects at each
level� Finally� we discuss the objectives of algorithmic modeling schemes�

��� Why Use Algorithmic Models

In the previous chapter we showed that the shape of three�dimensional objects can be modeled by
machines over the real numbers� The halting sets of these machines are the countable unions of
semi�algebraic sets� exactly the same canonical representation of geometric solids�

This brings up the following question� why use algorithmic models if they represent essentially
the same point sets as those given by geometric models� The answer is that we may want to use
algorithmic models for several reasons�

 There are objects� such as fractals� which are de�ned by a limit process and could only be
e	ectively described using an algorithm�

 There are objects whose geometry changes over time or react to external in�uences� This has
to be simulated using an algorithm�

 There are objects that possess a complex geometric structure which could be best captured
procedurally�

 Even for simple geometric objects� algorithmic models can be a convenience� because of the
extra power and �exibility provided by this scheme�

��� General Overview

In order to gain insight into Algorithmic Modeling� we will discuss it globally making comparisons
with Geometric Modeling�

��

CHAPTER 	� CONCEPTUAL FRAMEWORK ��

����� Geometric versus Algorithmic Modeling

Traditional solid modeling de�nes objects as regular point sets� We have seen in Part �� that they
can be constructed according to a representation based on some decomposition of space� In this sense�
the representation scheme is a language in which words �sequence of symbols� are the descriptions
of geometric solids and sentences �sequence of words� are descriptions of three�dimensional scenes�

Algorithmic modeling incorporates the symbol generation mechanisms into the representation�
Consequently� instead of the static structure used in geometric modeling� we are dealing with a
dynamic structure in which the rules for generation of symbols are encapsulated into the model
itself� producing a geometric description whenever that is required� Note that such scheme allows
for adapted realizations of a shape� sensitive to external environment conditions�

The procedural representation is actually a meta�representation that introduces another step
into the model creation�

����� Levels of Abstraction

Modeling can be understood using the paradigm of the universes� The description of objects in
the computer is viewed as a chain of abstraction levels corresponding to� objects in the real �or
imaginary� world� abstract models of these objects� concrete representations of the models� and
their computer implementations� In this process� objects are idealized relative to a modeling space
and represented through a symbolic description�

In the case of Algorithmic Modeling� the model is a virtual machine� the representation is
a program and the implementation a computing system� This hierarchy of abstraction levels is
depicted in Figure ����

All of the problems posed in the introductory chapter� related to the use of the universes
paradigm� can be restated in this context�

��� The Nature of Computation

Algorithmic models can be deterministic or stochastic depending on the nature of the computing
strategy adopted in their de�nition�

Note that� deterministic dynamical systems may exhibit caotic behavior and� on the other hand�
well behaved objects may be generated using probabilistic methods�

����� Deterministic Models

Deterministic models employ only predictable computational methods� All the mathematical rela�
tions between elements are �xed� This guarantees that� for a given input y� the machine M always
outputs the same result�

����� Probabilistic Models

Probabilistic models employ stochastic methods of computation which include random components�
Stochastic methods can be related either to properties of the object being modeled� to the

computational strategy or to both� An example of the �rst case is the mathematical characterization
of objects that are given in statistical terms� such as those with fuzzy boundaries� For this reason�
it is natural to model them as a stochastic process� An example of the second case is the Monte
Carlo method to compute integrals�

CHAPTER 	� CONCEPTUAL FRAMEWORK ��

Shapes

Algorithms

Languages

Processes

Physical
Universe

Mathematical
Universe

Representation
Universe

Implementation
Universe

Real Objects

Virtual Machines

Programs

Computing Systems

Figure ���� Levels of Abstraction of Algorithmic Modeling

��� Algorithmic Structures

Algorithmic models make use of some fundamental computational structures that allow the con�
struction of more complicated machines from simple ones�

The machine over a ring introduced in the previous chapter is associated with partial recursive
functions over R� This class of functions are generated by the basic polynomial maps and polynomial
inequalities and closed under the following operations�

����� Composition

Composition is the simplest computational structure� It corresponds to the successive application
of a sequence of functions�

����� Juxtaposition

Juxtaposition is the parallel execution of several independent computations�

CHAPTER 	� CONCEPTUAL FRAMEWORK ��

����� Recursion

Recursion is an important characteristic of the algorithmic modeling methods� It allows an e	ective
control of expansion� as well as� subdivision procedures� This computational structure is related to
growth processes�

����� Iteration

Iteration is used by time dependent models and by relaxation algorithms� This computational
structure is related to evolution processes�

��� Procedural Representations

A language is a way of expressing the notions of some domain� Every language has a set of primitive
entities which represent the basic notions of the domain and rules of composition by which compound
entities are constructed� These entities are encoded through symbols� The semantics of the language
corresponds to the meaning of the entities relative to that domain� The syntax of the language
corresponds to the structure of the symbolic representation�

The syntactic structure of a language �i�e� the ways in which symbols can be combined� is
de�ned by a grammar�

De�nition ��� � A formal grammar is formed by three types of symbols �terminals� nonterminals
and start symbol� together with a set of production rules�
Terminals are basic symbols that constitute the strings in the language�
Nonterminals are syntactic categories that denote sets of strings�
Productions are rewriting rules de�ning the ways in which syntactic categories may be built up� A
production is composed of a left side and a right side�
A derivation consists of replacing the symbol on the left side by the symbols on the right side�
The start symbol is a nonterminal selected to represent the whole language�

A grammar is context�free if the left side of every production consists of a single nonterminal
symbol� This means that productions rules can be applied independently in each symbol of a string�
A grammar is context�sensitive if symbol replacement depends on some neighborhood of the symbol�

The grammar can be used to generate a parser which recognizes the language and� thus� verify
whether a program code is syntactically correct or not�

Algorithmic models are represented by the code of a program for a given machine M � A universal
machine can simulate all possible machines� and the representation of a machine M is actually a
�program� giving the coding of M for this universal machine�

It is possible to associate classes of machines with classes of languages� This result allows�

 The analysis of classes of models through the algorithmic structures of the machines associated
with them�

 The categorization of models based on the classes of languages used to encode them�

����� Expressions

Expressions are simple languages consisting of operators and operands� combined by associativity and
precedence relations� Operators are functional elements and operands are data elements� Operators
take as input operands to output a value which can be used by another operator� The arity of an

CHAPTER 	� CONCEPTUAL FRAMEWORK ��

operator is the number of operands it requires� The most common are unary and binary operators�
Associativity and precedence relations de�ne the grouping of elements� eliminating ambiguities of the
language�

The syntax of an expression language can be de�ned by a grammar specifying the operators
and their precedence� type of operands� as well as� the form of the expressions� Every expression
can always be converted to a standard form� f�x� y�� where f is the operator and x� y are the
operands� Expressions can also be constructed using� �

pre	x form� f � x ���

post	x form� �� x � f

in	x form� x � f � y

An expression may be represented by a tree structure in which the leaf nodes are operands and
internal nodes are operators�

In the case of algorithmic modeling� we use shape expressions in which the operands are geometric
objects and the operators are groups of transformations�

����� Parallel Grammars

In a parallel grammar the production rules are applied in parallel such that all symbols of a string
are replaced simultaneously� Also� there is no distinction in this grammar between terminal and
nonterminal symbols� which means that all strings are words in the language� The start symbol is
used to generate strings through the successive application of the production rules�

����� Constraint Languages

Constraint languages are used to express relationships� They de�ne structural connections between
a set of elements� Therefore� they are declarative languages� as opposed to most programming
languages which are imperative�

A constraint system is composed of the following entities� primitive objects� handles and basic
relations� A handle is a reference to an object or part of an object� A constraint declaration speci�es
the conditions �relations� linking sets of handles� The system may also include mechanisms to build
compound objects and constraints from simpler ones�

We construct constraint networks by associating handles in di	erent constraint declarations�
Such a network may be represented by a graph in which the links are relations and the nodes are
handles�

In the case of algorithmic modeling� we deal mainly with geometric and shape constraints�

��� Implementation Methods

Program codes are static descriptions of algorithmic objects� In order to ful�ll their roles and have
an e	ective existence in a computational environment� these sets of symbols need to be processed
by a real machine� In this way� a passive program becomes an active process �e�g� the static
representation is transformed into a dynamic object��

In practice we use a computing system whose processing power is equivalent to a machine over
R� In other words� we employ a real machine which implements the model of a universal machine
described in the previous chapter�

�This is the notation used by Mathematica�

CHAPTER 	� CONCEPTUAL FRAMEWORK ��

As we mentioned before� instead of refer to this general model� it is instructive to study models
of simpler machines with processing power to implement only a class of algorithmic models� This
allows us to identify their structure� as well as their essential characteristics�

Below we will discuss some important classes of virtual machines for algorithmic modeling�

����� Stack Machines

This class of machine is essentially a simple calculator intended to process expressions� It consists of
a pushdown stack and a processor or interpreter that perform basic operations� During execution�
partial results are pushed into and poped from the stack� producing a �nal result in the end�

A shape calculator can be implemented with this kind of machine� In this case� the operands
de�ne shapes and the operations are used to modify their appearance and geometry�

����� Parallel Rewriting Systems

This class of machine performs structural transformations in a representation� It is intend to process
grammars expanding a initial representation through a series of derivations� The transformation rules
are executed in parallel in each element of the representation�

The structure of this kind of machine is inherently recursive�

����� Simulation Systems

This class of machine simulates processes that evolve in time or that react to external conditions�
The simulation can be continuous or discrete� The di	erence lies in the way the change of state of the
system is modeled� In continuous simulation the transformations de�ned to vary continuously with
time �or space�� In discrete simulation the transformations are de�ned relative to points isolated in
time �or space��

Because of the discrete nature of digital computers� even the simulation of a continuous system
must be discretized at some point� This can be done by discretizing the problem �thus� simulating a
discrete model�� or by discretizing the computation of the solution of the problem �thus� simulating
a continuous model��

��� Modeling Techniques

Any modeling system must include facilities to allow the creation of new objects� as well as� the mod�
i�cation of existing ones� This set of modeling techniques de�nes the main form of user interaction
with the system�

In algorithmic modeling systems� this is actually a two step process� �rst a procedural description
of the object must be created� then� it may be used to produce geometric descriptions of the object�

The algorithmic model could represent just an individual object or a family of objects� In this
last case� the user will interact also with this procedural description in order to specify a particular
member of the family� Note that this allows for two kinds of users which manipulate the model in
di	erent levels�

Since the algorithmic description is some sort of a program� the modeling system should be a
programming environment and the modeling techniques should include tools for program design�
debugging and testing�

The modeling system should also incorporate user interface protocols� such as the ones described
below� to facilitate control over the model�

CHAPTER 	� CONCEPTUAL FRAMEWORK ��

��	�� Command Based

In a command based interface� the user issues instructions directly to the system� This is usually
done using text input� The system�s response may include textual and graphical feedback�

This type of interface is well suited to shape calculator systems�

��	�� Control Panel

In a control panel interface� the user has access to selected parameters of the model using graphical
interaction�

This type of interface is very general and adequate for most modeling systems�

��	�� Direct Manipulation

Direct manipulation allows the user to interact with the model geometrically� This can be done
using kinematic or dynamic techniques� The ultimate goal is to immerse the user in a virtual world
populated by the objects being modeled�

This type of interface is desired in simulation systems�

��	�� Natural Selection

Natural selection allows the user to explore large parameter spaces in a e�cient manner� This is
done through a set of criteria which automatically eliminates most of the elements of a family of
objects� leaving to the user the task of selecting the best among few remaining candidates�

This type of interface is indicated for evolutionary systems in which provides a mechanism for
mutation of algorithm models�

Chapter �

System�s Issues

Algorithmic models encapsulate data and procedures� They are e	ectively realized as active pro�
cesses in the computational environment of a graphics system� For this reason� there is a close
interaction between the representation and the system� At the same time� there exists a great in�
dependency between classes of models and the system�s kernel� because the interaction obeys a well
de�ned protocol� This separation of implementation levels allows more �exibility and expression
power�

��� Procedural Objects and Computer Graphics

The intrinsic nature of procedural objects imply in a close connection between them and all subareas
of computer graphics�

����� Modeling

The functional characteristics of algorithmic models determine the geometry of the objects they
represent� In that sense� we can say that �form follows function��

In the same way that manufactured objects are related to mechanical�industrial engineering�
the knowledge base used to develop the algorithmic models is� in general� related to a discipline that
studies the object� Physical models� botanical models� and biological models are typical examples
of models which can be converted into algorithms that generate the shape of objects�

����� Visualization

One of the main motivations of using algorithmic models in computer graphics is to produce visual
renditions of the objects they represent� For this reason� there is also an emphasis in aspects that
in�uence the appearance of the objects� It is not enough to model only the shape� but also the
interaction of light and matter� We need illumination models that are �ne tuned for particular
classes of objects� One way to evaluate the e	ectiveness of an algorithmic model is realism of the
visualizations it produces� i�e� how close is the synthetic image from a picture of the real object�
Although� in some cases� we may not be able to describe the shape of a complex object in every
detail� it might be possible to model the visual texture that is produced by its geometry� This is
more than su�cient for visualization purposes�

�

CHAPTER
� SYSTEM�S ISSUES 	�

����� Animation

Algorithm models may also describe motion� as well as� the change of shape over time� Thus� we
are dealing with a dynamical system� Objects are now alive� they evolve in time interacting with
each other and with the environment� The description of this behavior must be incorporated into
the model from the very beginning and the graphics system must take that into account�

��� Algorithmic Descriptions

In this section� we discuss di	erent aspects of the algorithmic descriptions from the perspective of a
modeling system�

����� Models

While in geometric modeling we have shapes with a very well prescribed geometry and topology�
that is not always the case in algorithm modeling� Therefore� the mathematical tools used for
the construction of objects in geometric modeling come from traditional areas of mathematics�
Geometry� Topology� Algebra� Approximation Theory� Numerical Analysis etc� On the other hand�
algorithmic modeling systems are pressed by the need to �nd new mathematical tools expanding the
class of objects that can be represented� Besides the traditional areas mentioned above� constructing
techniques in algorithmic modeling use new areas of mathematics� Dynamical Systems� Geometric
Measure Theory� Probability Theory etc�

����� Representations

Algorithmic models are represented by computational processes� They are particular incarnations
of generic procedural descriptions of a given class of objects� The modeling system must provide a
operational environment in which all individual procedural objects may coexist and interact� For
this reason� there are strong links between the modeling system and representations of the objects�

����� Implementation

The implementation of algorithmic modeling systems has been in�uenced by several emerging con�
cepts in Computer Science� Among them� the most important is certainly the Object Oriented
Programming� This software development technique is perfectly identi�ed with the principles of
algorithmic modeling and allow the e	ective creation of its computational basis�

In the context of object oriented programming� a class of objects is composed of a state �local
memory� and a set of procedures� or methods activated by signals or messages�

Classes can be organized in hierarchical or graph structures which determine the inheritance of
methods by subclasses of a class� The makes possible the de�nition of objects in di	erent levels of
abstraction�

Objects are created through instancing operations� which generates an individual representation
of an object initializing its state with particular values� Objects interact sending messages back and
forth�

These ideas can be implemented in object oriented operating systems� such as in Smalltalk� or
Clos �Common Lisp Object System�� in object oriented programming languages� such as C��� and
even using this methodology with a conventional programming language� such as C or Pascal�

CHAPTER
� SYSTEM�S ISSUES 		

��� Properties of the Representation

We will not make a rigorous analysis of the properties of the algorithmic representation scheme�
We only mention that� in this respect� they appear to be in opposition to geometric representation
schemes�

Algorithmic representations are� in general�

 Ambiguous ! can have multiple interpretations�

 Non�unique ! can have various models for the same object�

 Relative Validity ! the concept of validity is at best subjective� �i�e based on the visual
comparison between images of the synthetic and real objects��

This properties are� in part� a consequence of the fact that it is not possible in general to obtain
exact geometric representations from algorithmic models� and also� in part� a consequence of the
inherent di�culty to deal with algorithmic models in a formal manner�

��� General Characteristics

Algorithmic models have several characteristics in common that we discuss below�

����� Data Base Ampli
cation

Algorithmic models have a very compact representation� The geometric data base is expanded using
procedural methods� This can be done for the whole object or for a small part of interest� The
expansion is usually performed during the execution of speci�c task� such as rendering�

It is desirable the use of recursive algorithms that result in a exponential growth of the geometric
data base�

����� Variable Levels of Detail

Algorithmic models are often adaptive� This allows� among other things� to control the level of
geometric detail generated by the model There are several methods to do this according to the
type of algorithmic model� The basic ones are� control of the geometric expansion� simpli�cation of
geometry� and use of separate procedures for di	erent levels of detail�

����� Stochastic Methods

Algorithmic models may use stochastic methods to introduce in a controlled way variations into the
model� These methods employ random processes that are based on the statistical characteristics of
the objects being modeled�

The use of tables of random numbers guarantees the e�ciency and repeatability of the processes�

��� Conversion between Representations

Conversion between procedural representations is a di�cult subject� Even in the classical theory of
computation there are only a few results�

CHAPTER
� SYSTEM�S ISSUES 	

Ideally� we should have a canonical form for every procedural representation scheme� such that
we could make assessments about particular descriptions of a model� Also� we should be able to
convert any procedural representation into one for a universal machine�

The problem is that the computational power of virtual machines associated with di	erent
algorithmic models is not the same� Therefore� it is not always possible to map one machine into
the other�

Chapter �

Algorithmic Models

This chapter analyses the main classes of algorithmic models� A natural way to classify these models
is through their procedural structure� Using this criterium� algorithmic models can be divided into�
geometry based models� functional based models� grammar based models� and physics based models�

�� Geometry based models describe shapes by mappings of spaces� These models can be
parametrized to de�ne a family of objects�

�� Functional based models employ functions of space and composition of those functions to create
and transform the geometry of objects�

�� Grammar based models use a geometric or topological language to de�ne objects�

�� Physics based models employ the laws of Mechanics to determine the movement and deforma�
tion of objects�

In the following section we will discuss each one of these types of models�

��� Geometry Based Models

Geometry based models incorporate the data of geometric objects and the procedures that are
necessary to manipulate such data�

����� Families of Shapes

Geometric models can often be parametrized and used to represent a family of shapes� The al�
gorithms are the same for a given family� Parameters are used to specify an individual element
of the family� The interaction with the model is through a communication protocol de�ning what
operations can be performed with it�

A simple example can illustrate these ideas more concretely�

Example 	�� �Sphere�

 Parameters�

� geometry� center� radius

��

CHAPTER �� ALGORITHMIC MODELS 	�

� appearance� color� transparency

 Operations�

� transformation� translation� rotation� scaling

� visualization� wire�frame� shaded

� query� ray intersection� surface normal� volume

As we can see� the parameters determine completely the object� Operations de�ne what can be
done with the object and may have colateral e	ects �e�g� generation of an image�� Some operations
return a value�

This type of representation has many advantages� It allows to isolate implementation details
from the model de�nition� It creates a mechanism to exploit particular aspects of a family of objects
in many operations �for example� in rendering�� It permits a wide choice of parametrizations�
contributing to a natural and intuitive way to specify the objects� It makes possible using� in the
same model� multiple forms of geometric description each one most appropriate to a type of problem
�for example� a shape can be described parametrically and implicitly�� It establishes a uniform
interface with the graphics system�

����� Generative Models

Generative models are objects de�ned by the action of a transformation group of k parameters�
T � Rm�Rk� Rn� on a parametric function F � Rl� Rm� called generator� The resulting object is
given by the parametric map T �F �x�� q� fromRl�k to Rn� where l and k are respectively the degrees
of freedom determined by the function F and the transformation T �

This type of model is a procedural generalization of parametric sweep models� �Snyder and
Kajiya� ������

Example 	�� �Sweep Surface� Consider the surface S�u� v� formed by applying the continuous
transformation 	 � R��R� R� to the parametric curve
 � R� R��

S�u� v�
 	�
�u�� v��

An advantage of this scheme is that the generative modeling representation is closed under the
composition operations above� resulting in a powerful algorithmic model�

��� Functional Based Models

Functional based models describe objects through functions of space� A basic shape is de�ned by one
function and may be altered by the application of other functions� In this type of model� primitives
and transformations are combined using functional composition�

����� Textures

A texture is a map t � U � Rm � Rn� where Rn is usually identi�ed with a color space and Rm is
the support space of the texture �texture space�� Given a function f � V � U � where V is a subset
of an object space� we call texture mapping the composition f � t � V � U � that associates to every
point x of the object with an element of the vector space Rn� See Figure ���� When U is a subset
of R�� t is a �D texture� When U is a subset of R�� t is a �D texture�

CHAPTER �� ALGORITHMIC MODELS 	�

V

U R

f t

t

f o

Figure ���� Texture Mapping

Textures can be used to de�ne various attributes� including the microgeometry� of an object� In
the following� we give some examples of procedural texture mapping in algorithmic modeling�

One example is the use of Fourier synthesis to produce textures� This method can be applied in
the modeling of clouds and terrain� �Gardner� ������ �Gardner� ������ In the �rst case� the texture
is interpreted as a density function� In the second case� it is a height �eld�

Another example of procedural texture involves a noise function� One way to construct this
function is to de�ne a random variable over an integer lattice of space� the function value on other
points is computed by interpolation� The noise function is used as a basis in the creation of other
functions through a composition process� Note that it plays a similar role as the sinusoidal function
in a Fourier series� The textures generated by functional composition of noise have been used very
successfully to model the appearance of marble� wood and other materials� �Perlin� ������

Mapping can also be used to de�ne the microgeometry of surfaces� This type of model� called
bump mapping� simulates the appearance of surface irregularities� The e	ect is obtained by a pertur�
bation of the surface normal during the computation of the illumination function� In this way� the
model behaves as if the original surface was slightly deformed to be compatible with those normal
vectors� �Blinn� ������ An alternative to bump mapping is the displacement mapping which actually
modi�es the surface geometry� �Cook� ������

����� Hypertexture

Hypertexture is based on solid texture functions� These functions are used directly to de�ne the
geometry of the object� rather than to de�ne shape attributes as in texture mapping� �Perlin and
Ho	ert� ������

This algorithmic model works with two kinds of functions� object density function� D� which
describes the density of a shape over space� and density modulation functions� fi� which are used to
control various aspects of the object�s spatial characteristics� Hypertexture is created by successive
application of modulation functions fi to a shape density function D�x��

H�D�x�
 fn�� � � f��f��D�x�����

Note that� although H�D�x�
 c seems equivalent to the implicit description of a surface�
we cannot guarantee that H always de�nes a valid surface� Therefore� hypertexture cannot be
considered strictly a geometric modeling scheme�

The hypertexture method have been used very e	ectively to model objects whose local geometry

CHAPTER �� ALGORITHMIC MODELS 	�

is so complex that cannot be represented by a bidimensional surface� Typical examples include fur
and hair�

��� Grammar Based Models

Grammar based models employ a language to de�ne the structure of an object� The elements of
this type of model constitute an alphabet with which valid representations �words� are generated�

In computer graphics two kinds of formal grammars are used� geometric and topological� The
words in a geometric grammar contain all necessary information to describe the shape of an object�
The words in a topological grammar contain only connectivity information and must be augmented
with geometric meaning in order to fully describe a shape�

This section studies applications of both of these grammars�

����� Geometric Grammars

Geometric grammars are �shape grammars�� The alphabet� in a formal geometric grammar� is
composed of basic shapes that are combined recursively to produce arbitrarily complex shapes� This
model was developed in connection with fractal objects� Fractals can be classi�ed into deterministic
and random�

Deterministic fractals are naturally de�ned by a shape grammar� Their construction starts with
an initiator that is transformed by generators� In this scheme� the initiator is the start symbol and
the generators are the production rules of the grammar�

Random fractals can be generated by a displacement subdivision algorithm� �Fournier� Fussell
and Carpenter� ������ The computational process for this method can be speci�ed by a shape
grammar with the addition of a probabilistic component� This type of algorithm introduces random
perturbations with the right statistical properties at increasingly smaller scales of the object� The
fractal dimension determines the relative magnitude of the perturbation in each scale�

An important theoretical issue concerns the conjecture that all fractals can be generated by a
shape grammar� �Smith� ����a��

����� Topological Grammars

Topological grammars are �graph grammars�� The alphabet� in a formal topological grammar� is
composed of link elements that are arranged to de�ne the connectivity of an object� This structure
must then be interpreted in a geometry� The models generated by topological grammars are also
called graftals� �Smith� ����b��

A shape is generated in two steps by this method� The �rst step corresponds to the application
of the grammar to produce the topological structure of the object� The second step consists in
the interpretation of this structure to create the geometry of the object� This interpretation step
requires the use of� verisimilitude rules which describe the intrinsic geometric characteristics of a
class of objects and also tropism rules which regulate the in�uence of environmental factors to the
shape of the object�

Graftals have been applied mainly to the modeling of biological systems� such as trees and other
plants� The formal languages known as �L�Systems� were developed for this purpose� �Prusinkiewicz�
Lindenmayer and Hanan� ������ Languages of this class are based on parallel graph grammars� Type

L languages are context�free� Types �L and �L are sensitive to a neighborhood of� respectively�
one and two symbols� These languages may also include parenthesis ��Bracketed L�Systems�� that
incorporate branches in the topological structures�

CHAPTER �� ALGORITHMIC MODELS 	�

��� Physics Based Models

Physics based models use the methods of mathematical physics to describe the shape and motion
of objects� In this context� the main parameters in the de�nition of the models have a physical
nature� like forces and torques� Moreover� the models are time dependent because� even if we are
only interested in static con�gurations� the equations expressing the laws of the physical system
must be integrated over time� such that forces produce the desired results�

Physics based models employ a simulation mechanism in order to compute the di	erential equa�
tions de�ning the system� In this respect� the problem or the solution must be discretized to allow
for the numerical computation� The discretization process results in a system of linear equations
that should be solved�

The techniques behind this type of models are well known� Optimization� Di	erential Equations�
Numerical Analysis�

����� Particle Systems

A particle system consists of point masses that move under the in�uence of forces� This type of model
is used to represent complex objects and phenomena which can be decomposed into �or governed
by� a set of particles� In this way� fuzzy objects� such as �re� rain� foliage� may be described by a
clump of primitive elements� �Reeves� ������ Also� non�rigid objects� such as cloth� may have their
shapes and motion determined by particles which act as control points� �House� Breen and Getto�
������

Particle systems may be classi�ed according to the type of interactions between particles� In
uncoupled systems� the forces acting on a given particle are independent of other particles in the
system� In coupled systems� internal forces are the result of interaction between particles� Coupled
systems may be further subdivided into systems with 	xed and dynamic coupling�

In a particle system� particles are created� exist during a certain period of time� and are exter�
minated� The attributes of a particle� including its shape� may change over time according to the
evolution of the system�

This type of algorithmic model is composed of three basic elements� the start values� the equa�
tions of motion� and the simulation mechanism� The start values de�ne the initial con�guration of
the system� they are the seed data for the model� The equations of motion describe the evolution
laws of the system� The simulation mechanism corresponds to the algorithmic substrate of the
model� It is responsible for computing the state of the system over time� This process is executed
repeatedly for each time step according to the granularity of the simulation�

A characteristic of particles systems is the use of stochastic techniques� This is a way to sim�
ulate complex behavior based on simple rules� Random processes may in�uence particle attributes
determined by statistical properties of the object�

����� Deformable Models

Deformable models describe continuous non�rigid objects which have their shapes modi�ed by the
action of forces� �Terzopoulos et al�� ������ The physical model can simulate perfectly elastic ma�
terials� as well as� deformable inelastic materials� In this last case� material properties� such as
viscoelasticity� plasticity and fracture� must be considered� �Terzopoulos and Fleischer� ������

The algorithmic model� usually� involves the computation of minimum energy con�gurations
that may be solved using variational or optimization techniques�

CHAPTER �� ALGORITHMIC MODELS 	�

����� Constraint Systems

Constraint systems are very general and applicable to a variety of modeling problems They are par�
ticularly useful to describe compound objects structured by mechanical linkages� �Barzel and Barr�
������ As an example� we could mention articulated objects� such as robots� in which constraints
are used to govern the work of di	erent types of joints� �Wilhelms and Barsky� ������ Another in�
teresting application is the construction of self assembly structures� in which constraints make sure
that parts are in the right places�

Note� Autonomous Models

Autonomous models go beyond the scope of algorithmic modeling� They use methods of Arti�cial
Intelligence and would be better understood in the context of behavioral modeling�

Animated Groups

Animated groups are a set of individual objects that together act as coherent whole� The algorithmic
model associated with this type of system concerns the description of behavior and interaction among
group members� �Reynolds� �����

Some of the main characteristics of animated groups are�

 Complex geometry of the members�

 Actions of the members are speci�ed by a behavior model�

 The interaction between members de�ne the action of the group�

This type of model makes heavy usage of communication and synchronization mechanisms� It
also requires the use of spatial searching techniques�

Chapter �

Examples

This chapter gives a few examples of algorithmic models� In spite of their extreme simplicity� we
will be able to identify most of the concepts introduced in this part�

The procedural description of the objects will be given in two forms� one using a language for
a virtual machine speci�c of each object�s class� and another using a general programming language
associated with a universal machine� These two descriptions are totally equivalent and a simple
transformation converts one into the other� We hope� this will make explicit the algorithmic nature
of the models and� at the same time� will clearly draw the �ne line separating the notions of data
and programs�

The examples roughly correspond to the classes of algorithmic models analyzed in the previous
chapter� The �rst one is a geometric object� a circle� The second one is a texture object� a �rewall�
The third one is a fractal object� the Koch�s curve� The last one is a particle system� a star�eld�

These objects are all two dimensional and the procedural descriptions given below are intended
to generate a picture of them� This is how algorithmic models are normally used in a graphics
system ! they interface directly with the rendering routines to produce an image� Note that� if a
geometric representation is required� the rendering routines can be replaced with functions to create
the appropriate data structures�

This use of procedural objects is becoming a standard practice in the world of ��D graphics�
Several drawing packages employ an algorithm model �Postscript� as their external representation�
As a result� the di	erences between data and programs can get even fuzzier� e�g� data is used to
generate a program and programs are interpreted as data�

��� Circle

A circle is a simple geometric object� It can be represented as a primitive in parametric or implicit
form� The parametric representation will be used in the example�

����� Geometric Representation

A circle is naturally speci�ed by its center and radius� Therefore� its representation as a geometric
primitive is given by the ��vector �x� y� r�� which in a programming language may be coded as�

def circle � �double x� y� r	

�

CHAPTER �� EXAMPLES
�

This pure geometric representation scheme requires that the knowledge to manipulate the math�
ematical model of the circle is encoded somewhere in the graphics system� For example� the para�
metric form can be used to draw it�

draw�circle�c� n�

�

moveto�c�x � c�r� c�y�	

for �t �
	 t �� �PI	 t �� �PI�n�

drawto�c�x � cos�t� � c�r� c�y � sin�t� � c�r�	

����� Object Representation

The representation of the circle as a data structure together with the procedural substrate required
to manipulate it can be encapsulated in a computational description of this family of objects�

�class circle

�state x y r�

�method draw �n�

��send graphics moveto �� x r� y�

�repeat �send graphics drawto �� x �� �cos t� r� �� y �� �sin t� r���

�t
 �PI �� �PI n������

The virtual machine of an object�oriented system has the following structure�

m�object�sys��

�

loop �

switch �read�input�� �

case DEF�CLASS�

if �compile�class�def��

install�dict�class�	

case NEW�OBJ�

if �lookup�class�name��

instantiate�obj� class�	

case SEND�MSG�

if �valid�msg� obj��

evaluate�method�msg�obj��	

default�

error��	

To draw a circle using this scheme� �rst an instance of a circle object is created ��new circle

� � ���� then the message draw is sent to the object�

�send �new circle � � �� draw ���

CHAPTER �� EXAMPLES
	

����� Universal Machine Representation

The algorithmic model of the circle primitive consists of the set of procedures used to manipulate
the geometric representation�

In order to generate the drawing we execute the program�

draw�circle��� �� �� ���	

��� Fire

Fire has a fuzzy geometry that can be modeled as a density function� Its algorithmic description
uses a procedural texture� This functional based model can be implemented by a stack machine�

����� Stack Machine Representation

The procedural representation is in a form of a pos�x expression language similar to Postscript
�Adobe Systems� ���"��

The code for a �re texture is

dup � � roll turbulence add colormap

where dup and roll are stack operators� add is an arithmetic operator and colormap and turbulence

are texture operators� turbulence is based on the noise primitive �Perlin� ������
The stack virtual machine has the following structure�

m�stack�code� args�

�

push�args�	

while �t � get�token�code�� �

if �t�type �� NUMBER�

push�t�value�	

else if �t�type �� OPERATOR�

exec�t�code�	

else

error��	

return pop��	

The implementation of operators usually involves manipulating the stack� where the values of
operands are stored� An example is the add operator

add��

�

push�pop�� � pop���	

CHAPTER �� EXAMPLES

����� Universal Machine Representation

The representation of the texture function for a universal machine is�

firewall�x�y�

�

return colormap�y � turbulence�x�y��	

����� Texture Generation

In both cases� the density array is generated evaluating the texture function at a set of points of its
domain �
� ��� �
� ���

texture�f�

�

for �u � i �
	 u �� �	 u �� uinc� i���

for �v � j �
	 v �� �	 v �� vinc� j���

t�i��j� � f�u�v�	

where f is m�stack�firecode� �u�v�� in the �rst case and firewall�u�v� in the second case�

��� Koch	s Curve

Koch�s curve is a self�similar deterministic fractal� Its algorithmic description uses a formal geometric
grammar� The associated virtual machine is a rewriting system which can be implemented by a
recursive procedure�

����� Rewriting System Representation

The grammar representation of the Koch�s curve is�

I �� X

R �� X �� X � X � X � X

where I is the initiator �start symbol�� and R is the generator �production� ��

�Note that we could have more than one production

CHAPTER �� EXAMPLES
�

The virtual machine has the following structure�

m�rewriting�word� productions� n�

�

foreach �c in word� �

foreach �r in production� �

if �c �� r�right�

append�r�left� new�word�	

else

copy�c� new�word�	

if �n�� � MAX�RECURSION�

m�rewriting�new�word� productions� n�	

else

draw�word�new�word� n�	

To draw an approximation of the fractal curve we use a procedure similar to the one adopted
by the LOGO language� The �nal string is interpreted as follows� symbol X corresponds to a
line segment of length ��n� symbol � corresponds to a positive rotation of "
 degrees� symbol �
corresponds to a negative rotation of ��
 degrees� The drawing routine is�

draw�word�word� n�

�

foreach �c in word� �

switch �c� �

case X� draw�line���n�	

case �� turn��
�	

case �� turn����
�	

To generate the model� we invoke the rewriting machine with the representation of Koch�s curve�

m�rewriting��X�� �X �� X � X � X � X��
�

CHAPTER �� EXAMPLES
�

����� Universal Machine Representation

The algorithmic model of Koch�s curve can be represented in a universal machine by the following
program�

x�code�angle� n�

�

if �n�� � MAX�RECURSION� �

x�code��
� n�	

x�code����
� n�	

x�code��
� n�	

x�code�
� n�	

 else �

draw�line���n�	

turn�angle�	

In order to generate the drawing we execute the program�

x�code�
�
�	

��� Star
eld

A star�eld is composed of bodies that move independently according to laws of motion� Its algorith�
mic description is that of a particle system� The virtual machine is an event�based simulation system
which can be implemented using a iterative structure� The system also incorporates a stochastic
component�

����� Simulation System Representation

The description of the star�eld for the simulation system is�

MODEL� starfield

POPULATION� num�particles

RUN�TIME� num�frames

EVENT� out�of�frame

kill�particle	

EVENT� new�frame

clear�image �� clear��	

draw�particle �� plot�p�pos�	

update�particle �� p�pos �� p�vel	

RANDOM�

p�pos �� �p�mean� p�deviation�	

p�vel �� �v�mean� v�deviation�	

CHAPTER �� EXAMPLES
�

The virtual machine for the simulation system has the following structure�

m�simulation�commands�

�

parse commands	

generate population	

do �

until ��e � event�list��� �� NULL�

process�e�	

 while �runtime � num�frames�	

To generate the star�eld we invoke the simulation machine with the commands describing the
particle system�

m�simulation�starfield�

����� Universal Machine Representation

The model of a star�eld can be represented in a universal machine by the following programs�

particle�system�num�particles� num�frames�

�

parallel �num�particles� �

particle�random�p�mean� p�deviation�

� random�v�mean� v�deviation��	

for �num�frames� �

clear��	

signal�new�frame�	

particle�pos� vel�

�

while �wait�new�frame�� �

if �out�of�image� �

exit��	

 else �

plot�pos�	

pos �� vel

CHAPTER �� EXAMPLES
�

In order to generate the star�eld we start the particle system�

particle�system�num�part� nun�frames�	

References
�

��� References

Adobe Systems� I� ����"�� Postscript Language � Reference Manual� Addison�Wesley�

Barnsley� M� ������� Fractals everywhere� Academic Press�

Barzel� R� and Barr� A� H� ������� A modeling system based on dynamic constraints� Computer
Graphics �SIGGRAPH �

 Proceedings�� ���������!����

Blanchard� P� ������� Complex analytic dynamics of the riemman sphere� Bulletin of the American
Mathematical Society� �����!����

Blinn� J� F� ������� Simulation of wrinkled surfaces� Computer Graphics �SIGGRAPH ��
 Proceed�
ings�� ��������"!����

Blum� L�� Shubb� M�� and Smale� S� ������� On a theory of computation and complexity over the real
numbers� np�completness� recursive functions and universal machines� Bulletin of the American
Mathematical Society� �������!�"�

Blum� L� and Smale� S� ������� The godel incompleteness theorem and decidability over a ring�
preprint�

Cook� R� L� ������� Shade trees� Computer Graphics �SIGGRAPH �
� Proceedings�� ���������!����

Fournier� A�� Fussell� D�� and Carpenter� L� ������� Computer rendering of stochastic models�
Communications of the ACM� ���"�����!����

Gardner� G� Y� ������� Simulation of natural scenes using textured quadric surfaces� Computer
Graphics �SIGGRAPH �
� Proceedings�� ��������!�
�

Gardner� G� Y� ������� Visual simulation of clouds� Computer Graphics �SIGGRAPH �
� Proceed�
ings�� ���������!�
��

House� D� H�� Breen� D� E�� and Getto� P� H� ������� On the dynamic simulation of physically�based
particle�system models�

Mandelbrot� B� ������� Fractals� Form� Chance and Dimension� W� H� Freeman� San Francisco�
California�

Milner� R� ������� Communication and Concurrency� Prentice Hall� Englewood Cli	s� N�J�

Peitgen� H� O� and Saupe� D� ������� The Science of Fractal Images� Springer�Verlag� New York�

Perlin� K� ������� An image synthesizer� Computer Graphics �SIGGRAPH �
� Proceedings��
���������!��"�

Perlin� K� and Ho	ert� E� M� ������� Hypertexture� Computer Graphics �SIGGRAPH �
� Proceed�
ings�� ���������!�"��

Prusinkiewicz� P�� Lindenmayer� A�� and Hanan� J� ������� Developmental models of herbaceous
plants for computer imagery purposes� Computer Graphics �SIGGRAPH �

 Proceedings��
���������!��
�

Reeves� W� T� ������� Particle systems ! a technique for modeling a class of fuzzy objects� ACM
Trans� Graphics� ����!�
��

References
�

Reynolds� C� W� ������� Flocks� herds� and schools� A distributed behavioral model� Computer
Graphics �SIGGRAPH �
� Proceedings�� ��������!���

Smale� S� ����
�� Some remarks on the foundations of numerical analysis� SIAM Review� ���������!
��
�

Smith� A� R� �����a�� Graftal formalism notes� Technical Memo no� �� Pixar�

Smith� A� R� �����b�� Plants� fractals and formal languages� Computer Graphics �SIGGRAPH �
�
Proceedings�� �������!�
�

Snyder� J� M� and Kajiya� J� T� ������� Generative modeling� A symbolic system for geometric
modeling� Computer Graphics �SIGGRAPH ��� Proceedings�� �"�����"�!����

Terzopoulos� D� and Fleischer� K� ������� Modeling inelastic deformation� Viscoelasticity� plasticity�
fracture� Computer Graphics �SIGGRAPH �

 Proceedings�� �������"�!����

Terzopoulos� D�� Platt� J�� Barr� A�� and Fleischer� K� ������� Elastically deformable models� Com�
puter Graphics �SIGGRAPH �
� Proceedings�� �������
�!����

Wilhelms� J� and Barsky� B� A� ������� Using dynamic analysis to animate articulated bodies such as
humans and robots� In Wein� M� and Kidd� E� M�� editors� Graphics Interface �
� Proceedings�
pages ��!�
�� Canadian Inf� Process� Soc�

